Ethnopharmacological Relevance: Qian Yang Yu Yin Granule (QYYYG), a traditional Chinese poly-herbal formulation, has been validated in clinical trials to mitigate cardiac remodeling (CR), and cardiac damage in patients with hypertension. However, the specific mechanism remains unclear.

Aim Of The Study: This study explored the potential effects and potential mechanisms of QYYYG on hypertensive CR by combining various experimental approaches.

Materials And Methods: Spontaneously hypertensive rats (SHRs) were used as a model of hypertensive CR, followed by QYYYG interventions. Blood pressure, cardiac function and structure, histopathological changes, and myocardial inflammation and oxidative stress were tested to assess the efficacy of QYYYG in SHRs. For in vitro experiments, a cell model of myocardial hypertrophy and injury was constructed with isoprenaline. Cardiomyocyte hypertrophy, oxidative stress, and death were examined after treatment with different concentrations of QYYYG, and transcriptomics analyses were performed to explore the underlying mechanism. Nrf2 and the ROS/NF-κB/NLRP3 inflammasome pathway were detected. Thereafter, ML385 and siRNAs were used to inhibit Nrf2 in cardiomyocytes, so as to verify whether QYYYG negatively regulates the NLRP3 inflammasome by targeting Nrf2, thereby ameliorating the associated phenotypes. Finally, high performance liquid chromatography (HPLC) was conducted to analyze the active ingredients in QYYYG, and molecular docking was utilized to preliminarily screen the compounds with modulatory effects on Nrf2 activities.

Results: QYYYG improved blood pressure, cardiac function, and structural remodeling and attenuated myocardial inflammation, oxidative stress, and cell death in SHRs. The transcriptomics results showed that the inflammatory response might be crucial in pathological CR and that Nrf2, which potentially negatively regulates the process, was upregulated by QYYYG treatment. Furthermore, QYYYG indeed facilitated Nrf2 activation and negatively regulated the ROS/NF-κB/NLRP3 inflammasome pathway, therefore ameliorating the associated phenotypes. In vitro inhibition or knockdown of Nrf2 weakened or even reversed the repressive effect of QYYYG on ISO-induced inflammation, oxidative stress, pyroptosis, and the NLRP3 inflammasome activation. Based on the results of HPLC and molecular docking, 30 compounds, including cafestol, genistein, hesperetin, and formononetin, have binding sites to Keap1-Nrf2 protein and might affect the activity or stability of Nrf2.

Conclusion: In conclusion, the alleviatory effect of QYYYG on hypertensive CR is related to its regulation of Nrf2 activation. Specifically, QYYYG blocks the activation of the NLRP3 inflammasome by boosting Nrf2 signaling and depressing myocardial inflammation, oxidative stress, and pyroptosis, thereby effectively ameliorating hypertensive CR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118820DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
nlrp3 inflammasome
16
inflammation oxidative
16
qyyyg
13
myocardial inflammation
12
nrf2
10
qian yang
8
yang yin
8
yin granule
8
cardiac remodeling
8

Similar Publications

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!