Introduction: Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) for lung cancer staging is operator dependent, resulting in high rates of non-diagnostic lymph node (LN) samples. We hypothesized that an artificial intelligence (AI) algorithm can consistently and reliably predict nodal metastases from the ultrasound images of LNs when compared to pathology.
Methods: In this analysis of prospectively recorded B-mode images of mediastinal LNs during EBUS-TBNA, we used transfer learning to build an end-to-end ensemble of three deep neural networks (ResNet152V2, InceptionV3, and DenseNet201). Model hyperparameters were tuned, and the optimal version(s) of each model was trained using 80% of the images. A learned ensemble (multi-layer perceptron) of the optimal versions was applied to the remaining 20% of the images (Test Set). All predictions were compared to the final pathology from nodal biopsies and/or surgical specimen.
Results: A total of 2,569 LN images from 773 patients were used. The Training Set included 2,048 LNs, of which 70.02% were benign and 29.98% were malignant on pathology. The Testing Set included 521 LNs, of which 70.06% were benign and 29.94% were malignant on pathology. The final ensemble model had an overall accuracy of 80.63% (95% confidence interval [CI]: 76.93-83.97%), 43.23% sensitivity (95% CI: 35.30-51.41%), 96.91% specificity (95% CI: 94.54-98.45%), 85.90% positive predictive value (95% CI: 76.81-91.80%), 79.68% negative predictive value (95% CI: 77.34-81.83%), and AUC of 0.701 (95% CI: 0.646-0.755) for malignancy.
Conclusion: There now exists an AI algorithm which can identify nodal metastases based only on ultrasound images with good overall accuracy, specificity, and positive predictive value. Further optimization with larger sample sizes would be beneficial prior to clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000541365 | DOI Listing |
BMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFBMC Nurs
January 2025
Nursing Department, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.
View Article and Find Full Text PDFBMC Public Health
January 2025
Statistics, Brigham Young University, Provo, 84602, Utah, USA.
Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.
View Article and Find Full Text PDFSci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China.
Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!