Sodium houttuyfonate induces bacterial lipopolysaccharide shedding to promote macrophage M1 polarization against acute bacterial lung infection.

Biomed Pharmacother

Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China. Electronic address:

Published: October 2024

Sodium houttuyfonate (SH), derived from the widely utilized natural herb Houttuynia cordata, exhibits an effective therapeutic effect on various diseases, including bacterial and fungal infections, especially the respiratory tract infection. Therefore, the anti-microbial mechanisms of SH may be different from the single-target action mechanism of conventional antibiotics, and further research is needed to clarify this. Firstly, we discovered that SH can effectively intervene in mouse lung infections by reducing bacterial load and acute inflammation response related to pneumonia caused by Pseudomonas aeruginosa. Interestingly, our results confirmed that SH has surface activity and can directly induce changes in the cell wall the shedding of surface lipopolysaccharide (LPS). Additionally, we found that SH-induced shedding of LPS can induce M1 polarization of macrophages in the early stage, leading to the production of corresponding polarization effector molecules. Subsequently, we discovered that SH-induced M1 polarization cells can effectively phagocytose and kill bacterial cells. The protein expression results indicated that SH can enhance the expression of M1 polarization pathway of TLR4/MyD88/NF-κB during the initial phase of macrophage and pathogen interaction. In summary, our results imply that SH could directly induce the shedding of P. aeruginosa LPS in a surfactant-like manner. Afterwards, the SH induced abscisic LPS can initiate the TLR4/MyD88/NF-κB immune pathway to trigger the M1 polarization of macrophages, which might intervene the P. aeruginosa-caused acute lung infection at early stage. Based on these findings, we attempted to coin the term "immune feedback eradication mechanism against pathogen of natural product" to describe this potent antimicrobial mechanism of SH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117358DOI Listing

Publication Analysis

Top Keywords

sodium houttuyfonate
8
lung infection
8
directly induce
8
polarization macrophages
8
early stage
8
polarization
6
bacterial
5
houttuyfonate induces
4
induces bacterial
4
bacterial lipopolysaccharide
4

Similar Publications

The rising prevalence of obesity has resulted in an increased demand for innovative and effective treatment strategies. Thunb. has demonstrated promising potential in preventing obesity.

View Article and Find Full Text PDF

Sodium houttuyfonate induces bacterial lipopolysaccharide shedding to promote macrophage M1 polarization against acute bacterial lung infection.

Biomed Pharmacother

October 2024

Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China. Electronic address:

Sodium houttuyfonate (SH), derived from the widely utilized natural herb Houttuynia cordata, exhibits an effective therapeutic effect on various diseases, including bacterial and fungal infections, especially the respiratory tract infection. Therefore, the anti-microbial mechanisms of SH may be different from the single-target action mechanism of conventional antibiotics, and further research is needed to clarify this. Firstly, we discovered that SH can effectively intervene in mouse lung infections by reducing bacterial load and acute inflammation response related to pneumonia caused by Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Objective: The gut-lung axis involves microbial and product interactions between the lung and intestine. Antibiotics for chronic asthma can cause intestinal dysbiosis, disrupting this axis. Sodium houttuyfonate (SH) has diverse biological activities, including modifying gut microbiota, antibacterial, and anti-inflammatory.

View Article and Find Full Text PDF

Sodium Houttuyfonate Ameliorates DSS-induced Colitis Aggravated by Candida albicans through Dectin-1/NF-κB/miR-32-5p/NFKBIZ Axis Based on Intestinal microRNA Profiling.

Inflammation

July 2024

Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.

Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C.

View Article and Find Full Text PDF

The present study evaluated the antiseizure and neuroprotective effects of sodium houttuyfonate (SH), a derivative of Thunb. (), in a kainic acid (KA)- induced seizure rat model and its underlying mechanism. Sprague Dawley rats were administered normal saline, SH (50 or 100 mg/kg), or carbamazepine (300 mg/kg) by oral gavage for seven consecutive days before the intraperitoneal administration of KA (15 mg/kg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!