Unraveling the fate of 6PPD-Q in aquatic environment: Insights into formation, dissipation, and transformation under natural conditions.

Environ Int

CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China. Electronic address:

Published: September 2024

The widespread occurrence of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) in aquatic environments and its hazards to aquatic species underscore the necessity of comprehending its environmental fate. Here, we investigated the transformation from 6PPD to 6PPD-Q and the attenuation of 6PPD-Q in surface water under natural conditions. Contrary to prior findings, this work revealed that 6PPD-Q and its precursor 6PPD-OH/6PPD-(OH), were not detected through target analysis and suspect screening during 6PPD transformation in the surface water under the natural conditions. 6PPD-Q predominantly accumulated in TWPs in ambient atmosphere with 1.28 % mass yield from the 6PPD dissipation. Subsequently, 6PPD-Q was eluted from TWPs and released to the water environment. The investigation on the natural attenuation of 6PPD-Q in the surface water demonstrated that direct and indirect photolysis facilitated the rapid dissipation of 6PPD-Q with a half-life of 2.57 h. Utilizing the liquid chromatography high resolution mass spectrometry (LC-HRMS), including both time of flight (TOF) MS and Orbitrap MS, twelve novel transformation products (TPs) of 6PPD-Q were identified by using a comprehensive non-targeted screening strategy. The results from two dimensions gas chromatography (GC×GC) TOF-MS revealed additional two TPs. Based on the molecular structure of TPs, four major pathways of 6PPD-Q attenuation were proposed, including bond cleavage, hydroxylation, quinone cleavage and rearrangement. All TPs were predicted to exhibit lower toxicity, indicating the natural attenuation of 6PPD-Q reduced its toxicity and potential environmental risks. This study provides crucial insights into the environmental fate of 6PPD-Q, highlighting the significance of understanding both its formation from 6PPD and its subsequent attenuation processes under natural conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.109004DOI Listing

Publication Analysis

Top Keywords

natural conditions
16
6ppd-q
13
attenuation 6ppd-q
12
surface water
12
fate 6ppd-q
8
6ppd-q aquatic
8
environmental fate
8
6ppd-q attenuation
8
6ppd-q surface
8
water natural
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!