Nano- and microplastics (NMPs), ubiquitous in the environment, pose significant health risks. We report for the first time a comprehensive study using in-vitro, in-vivo, and ex-vivo models to investigate the penetration and inflammatory effects of fragmented polystyrene (fPS) on human skin, including the analysis of both penetration depth and fPS amounts that penetrate the skin. Human keratinocyte (HaCaT) and human dermal fibroblast (HDF) cells exposed to fPS exhibited notable internalization and cytotoxicity. In a 3D human skin model, fPS particles penetrated the dermal layer within one hour, with an average maximum penetration of 4.7 μg for particles smaller than 2 µm. Similarly, mouse dorsal skin and human abdominal skin models confirmed fPS penetration. RNA sequencing revealed substantial upregulation of inflammatory genes, including IL-1α, IL-1β, IL-18, IL-6, IL-8, ICAM-1, FOS, and JUN, following fPS exposure. These findings were validated at both the mRNA and protein levels, indicating a robust inflammatory response. Notably, the inflammatory response in both the 3D human skin and mouse models increased in a dose-dependent manner, underscoring the toxicological impact of fPS on skin health. This study provides crucial insights into the mechanisms through which NMPs affect human health and underscores the need for further research to develop effective mitigation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135815DOI Listing

Publication Analysis

Top Keywords

human skin
12
fragmented polystyrene
8
skin
8
skin human
8
inflammatory response
8
fps
7
human
7
deciphering links
4
links fragmented
4
polystyrene driver
4

Similar Publications

(Group A Streptococcus, GAS) is a human pathogen that causes local and systemic infections of the skin and mucous membranes. However, GAS is also found asymptomatically in the nasopharynx of infants. GAS infections, including pharyngitis and invasive pneumosepsis, pose significant public health concerns.

View Article and Find Full Text PDF

Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).

View Article and Find Full Text PDF

Background: There is continuous demand for safe, effective cosmetic ingredients to treat the signs of aging skin, including fine lines, wrinkles, brown spots, discoloration, laxity, and sagging. While there are a plethora of cosmeceutical peptides, few combine anti-aging and anti-inflammatory benefits with small size.

Methods: Preclinical and clinical studies evaluated the anti-inflammatory properties, anti-aging benefits, and tolerability of acetyl dipeptide-31 amide (AP31), a novel, small, anti-aging micropeptide, to understand its impact as a multifaceted, cosmetic, anti-aging, and anti-inflammaging ingredient.

View Article and Find Full Text PDF

With the rapid advance of technology, human interactions with virtual avatars in simulated social environments are becoming increasingly common. The aim of the current study was to examine users' perception of social traits and emotions of "neutral," expressionless avatars using an open-source collection. These avatars represented different ethnicities, genders, and occupations via visual features including skin tone, facial structure, and apparel.

View Article and Find Full Text PDF

Social Media Potential and Impact on Changing Behaviors and Actions in Skin Health Promotion: Systematic Review.

J Med Internet Res

January 2025

Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland.

Background: Social media is used as a tool for information exchange, entertainment, education, and intervention. Intervention efforts attempt to engage users in skin health.

Objective: This review aimed to collect and summarize research assessing the impact of social media on skin health promotion activities undertaken by social media users.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!