The environmental risk of Cd in soils strongly depends on the mobilization of Cd in soils. However, limited knowledge exists on the redistribution of exogenic Cd inputs in soils, especially across diverse lithological regions. Herein, we aimed to investigate the fate of Cd in soils from two mining areas with contrasting lithologies (siliceous and calcareous) using stable Cd isotopes. The isotope tracing results confirm that mining activities are the main Cd source in both areas. The positive correlation between δCd values and goethite/dolomite content indicates the release of heavy Cd isotopes during the dissolution of exogenetic minerals. Additionally, high contents of exchangeable Cd (11 % to 36 %) and Fe oxide-bound Cd (29 % to 42 %) drive plant pumps to transport heavy Cd isotopes from the deeper to upper horizons of the soils from the siliceous area. In the calcareous area, the total organic carbon content is positively correlated with the Cd concentration and δCd value, suggesting potential complexation of Cd with organic matter due to the stabilizing effect of carbonate minerals on soil organic matter. This study highlights the different redistributions of exogenous Cd in soils from diverse lithological regions, emphasizing the need to consider regional lithology when developing soil quality standards for Cd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135798 | DOI Listing |
Sci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFSci Total Environ
January 2025
CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
Climate change affects groundwater availability and residence times, necessitating a thorough understanding of aquifer characteristics to define sustainable yields, particularly in regions where water is heavily exploited. This study focuses on the Volvic volcanic aquifer (Chaîne des Puys, France), where groundwater recharge has decreased due to climate change, raising concerns about water use sustainability. To address these challenges, this work proposes a multi-tracer approach, based on hydrogeological monitoring, including the estimation of groundwater ages, major elements chemistry and water stable isotopes to better characterise this resource decrease and more peculiarly its origin and its impact on the environment that has never been addressed.
View Article and Find Full Text PDFNutrients
January 2025
Department of Nutrition, University of Applied Sciences Münster (FH), 48149 Münster, Germany.
Rationale: The dietary components choline, betaine, and L-carnitine are converted by intestinal microbiota into the molecule trimethylamine (TMA). In the human liver, hepatic flavin-containing monooxygenase 3 oxidizes TMA to trimethylamine-N-oxide (TMAO). TMAO is considered a candidate marker for the risk of cardiovascular disease.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Interdisciplinary Department of Medicine, University of Bari, Piazza G. Cesare, 11, 70124 Bari, Italy.
: Radon is a known risk factor for lung cancer, and residential radon exposure is the leading cause of lung cancer in never smokers; however, in Italy, there is still a lack of public awareness regarding the risk caused by residential radon exposure. In this mortality study, which was carried out in an Italian Apulian town (Locorotondo) of the Bari province, we aimed to analyze lung cancer mortality and all-cause mortality in a population highly exposed to radon. : The study period was 1998-2021.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Andean Geothermal Center of Excellence, University of Chile, Santiago 8370446, Chile.
We used otolith chemistry to test and complement current hypotheses regarding habitat use and connectivity between sub-populations in Area 48 of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Sagittal otoliths from 45 fish sampled near the South Orkney Islands were analysed. Their elemental (Li, Na, Mg, Cr, Mn, Sr, Sn, and Ba relative to Ca) and isotopic (δO and δC) signatures were examined in both the nuclear and marginal regions, representing juvenile and adult stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!