Epigenetics and the timing of neuronal differentiation.

Curr Opin Neurobiol

Duke University School of Medicine, Department of Neurobiology, Durham, NC 27710, USA. Electronic address:

Published: December 2024

Epigenetic regulation of the genome is required for cell-type differentiation during organismal development and is especially important to generate the panoply of specialized cell types that comprise the brain. Here, we review how progressive changes in the chromatin landscape, both in neural progenitors and in postmitotic neurons, orchestrate the timing of gene expression programs that underlie first neurogenesis and then functional neuronal maturation. We discuss how disease-associated mutations in chromatin regulators can change brain composition by impairing the timing of neurogenesis. Further, we highlight studies that are beginning to show how chromatin modifications are integrated at the level of chromatin architecture to coordinate changing transcriptional programs across developmental including in postmitotic neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611672PMC
http://dx.doi.org/10.1016/j.conb.2024.102915DOI Listing

Publication Analysis

Top Keywords

postmitotic neurons
8
epigenetics timing
4
timing neuronal
4
neuronal differentiation
4
differentiation epigenetic
4
epigenetic regulation
4
regulation genome
4
genome required
4
required cell-type
4
cell-type differentiation
4

Similar Publications

Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity.

View Article and Find Full Text PDF

The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Unlabelled: The neurodegenerative disorder Frontotemporal Dementia (FTD) can be caused by a repeat expansion (GGGGCC; G4C2) in C9orf72. The function of wild-type C9orf72 and the mechanism by which the C9orf72-G4C2 mutation causes FTD, however, remain unresolved. Diverse disease models including human brain samples and differentiated neurons from patient-derived induced pluripotent stem cells (iPSCs) identified some hallmarks associated with FTD, but these models have limitations, including biopsies capturing only a static snapshot of dynamic processes and differentiated neurons being labor-intensive, costly, and post-mitotic.

View Article and Find Full Text PDF

Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear.

Dev Biol

January 2025

Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA. Electronic address:

During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!