Investigating the potential of waste glass in paver block production using RSM.

Sci Rep

Department of Civil Engineering, School of Engineering and Applied Sciences, Kampala International University, Kampala, Uganda.

Published: September 2024

The global surge in glass waste generation, exceeding 130 million tons annually, presents a pressing environmental issue, compounded by inadequate recycling practices, it is concerning that the global recycling rate for glass waste is below 50%. This research investigates the utilization of WG as a FA substitute in paver block to mitigate the ecological footprint of conventional paver block while enhancing its mechanical properties. WG's unique characteristics, such as high silica content and impermeability, make it a promising alternative. A comprehensive experimental approach, including tests like water absorption, dry density, workability, compressive strength, ultrasonic pulse velocity, and rebound hammer, demonstrated WG's potential to improve concrete's durability and performance. For instance, a 40% WGA replacement reduced the absorption rate 12%, while 20% WGA incorporation-maintained strength properties close to the control mix, with compressive strengths up to 30.80 MPa at 28 days. Employing RSM as predictive models, the study showed R values of 0.9513, 0.9983, 0.9156, 0.9925, and 0.9895 for water absorption, dry density, compressive strength, ultrasonic pulse velocity, and rebound hammer, respectively. This study offers supporting global research efforts to advance sustainable and affordable construction materials, leading to a significant reduction in landfill waste and the conservation of precious natural resources worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401851PMC
http://dx.doi.org/10.1038/s41598-024-72789-yDOI Listing

Publication Analysis

Top Keywords

paver block
12
glass waste
8
water absorption
8
absorption dry
8
dry density
8
compressive strength
8
strength ultrasonic
8
ultrasonic pulse
8
pulse velocity
8
velocity rebound
8

Similar Publications

The present research incorporates five AI methods to enhance and forecast the characteristics of building envelopes. In this study, Response Surface Methodology (RSM), Support Vector Machine (SVM), Gradient Boosting (GB), Artificial Neural Networks (ANN), and Random Forest (RF) machine learning method for optimization and predicting the mechanical properties of natural fiber addition incorporated with construction and demolition waste (CDW) as replacement of Fine Aggregate in Paver blocks. In this study, factors considered were cement content, natural fine aggregate, CDW, and coconut fibre, while the resulting measure was the machinal properties of the paver blocks.

View Article and Find Full Text PDF
Article Synopsis
  • The ceramic industry creates a lot of waste, around 20-30% of what it produces, mainly due to manufacturing issues and damaged products.
  • This study looks at recycling ceramic waste to make strong materials for paver blocks, which are used for building surfaces.
  • Tests show that using up to 30% ceramic waste in these blocks makes them stronger and helps reduce waste in landfills, while also saving natural resources.
View Article and Find Full Text PDF

Investigating the potential of waste glass in paver block production using RSM.

Sci Rep

September 2024

Department of Civil Engineering, School of Engineering and Applied Sciences, Kampala International University, Kampala, Uganda.

The global surge in glass waste generation, exceeding 130 million tons annually, presents a pressing environmental issue, compounded by inadequate recycling practices, it is concerning that the global recycling rate for glass waste is below 50%. This research investigates the utilization of WG as a FA substitute in paver block to mitigate the ecological footprint of conventional paver block while enhancing its mechanical properties. WG's unique characteristics, such as high silica content and impermeability, make it a promising alternative.

View Article and Find Full Text PDF

While several research studies considered the utilization of reclaimed asphalt pavement (RAP) aggregates for asphalt and concrete pavements, very few attempted its possible utilization for precast concrete applications like concrete paver blocks (CPBs). Moreover, few attempts made in the recent past to improve the strength properties of RAP inclusive concrete mixes by incorporating certain supplementary cementitious materials (SCMs) have reported an insignificant or marginal effect. The present study attempts to comprehensively investigate the utilization potential of some locally and abundantly available materials having suitable physicochemical properties to improve the performance of a zero-slump CPB mix containing 50% RAP aggregates.

View Article and Find Full Text PDF

This study aimed to validate that laboratory-scale results could be commercially replicated when manufacturing marketable precast concrete. Construction and demolition waste (CDW) was separated into two (fine and coarse) recycled aggregates (RAs). Precast paver and kerb units were fabricated by partial or total substitution of natural aggregates (NAs) by RAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!