Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of gravity on the lungs has been evaluated using computed tomography (CT) in the supine and prone positions but not the standing position. However, as humans spend most of the daytime in the standing position, we aimed to compare lung attenuation gradients between the supine and standing positions, and to assess the correlations between the lung attenuation gradients and participant characteristics, including pulmonary function test results. Overall, 100 healthy participants underwent conventional/supine and upright CT, and lung attenuation gradients were measured. Lung attenuation gradients in anteroposterior direction were greater in the supine position than in standing position (all p values < 0.0001) in both upper lobes at the level of the aortic arch (right: standing/supine, -0.02 ± 0.19/0.53 ± 0.21; left: standing/supine, -0.06 ± 0.20/0.51 ± 0.21); in the right middle (standing/supine, -0.26 ± 0.41/0.53 ± 0.39), left upper (standing/supine, -0.35 ± 0.50/0.66 ± 0.54), and lower lobes at the level of the inferior pulmonary vein (right: standing/supine, -0.22 ± 0.30/0.65 ± 0.41; left: standing/supine, -0.16 ± 0.25/0.73 ± 0.54); and in both lower lobes just above the diaphragm (right: standing/supine, -0.13 ± 0.22/0.52 ± 0.32; left: standing/supine, -0.30 ± 0.57/0.55 ± 0.37). Craniocaudal gradients were greater in the standing position (right: standing/supine, 0.41 ± 0.30/0.00 ± 0.16; left: standing/supine, 0.35 ± 0.30/-0.02 ± 0.16, all p values < 0.0001). No moderate to very high correlations were observed between age, sex, height, weight, body index mass, or pulmonary function test results and each lung attenuation gradient. Lung attenuation gradients in anteroposterior direction, which was observed in the supine position, disappeared in the standing position. However, the craniocaudal lung attenuation gradient, which was not present in the supine position, appeared in the standing position.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401888 | PMC |
http://dx.doi.org/10.1038/s41598-024-72786-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!