Development and child health in a world of synthetic chemicals.

Pediatr Res

Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Published: September 2024

AI Article Synopsis

  • Chemical pollution poses a serious risk to children's development globally, with maternal exposure to toxic substances affecting fetal growth and health.
  • Certain persistent organic chemicals have been linked to pregnancy complications and negative neurodevelopmental outcomes in children, while the effects of substances like phthalates and bisphenols are less clear.
  • The findings underscore the urgent need for regulations on emerging pollutants that are prevalent in our environment and may harm both fetal development and childhood well-being.

Article Abstract

Chemical pollution is one of today's most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. IMPACT: Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41390-024-03547-zDOI Listing

Publication Analysis

Top Keywords

chemical pollution
8
antenatal disorders
8
fetal growth
8
growth restriction
8
phthalates bisphenols
8
emerging evidence
8
disorders
5
development child
4
child health
4
health synthetic
4

Similar Publications

The contamination of water systems by antibiotics such as ciprofloxacin (CIP), which is used to treat bacterial infections, poses severe risks to environmental safety and public health. To address this issue, a novel zwitterionic polymeric nanocomposite (PNs-HTC) was developed in this study. This novel material was synthesized using alkylated chitosan ionic macromonomers, ionic monomers and combined with hydrotalcite (HTC) via in situ free radical polymerization.

View Article and Find Full Text PDF

Regenerable chitosan-biochar-TiO composite sponges for hazardous pollutants removal from water: The case of carbamazepine.

Int J Biol Macromol

January 2025

Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy; CNR NANOTEC - Istituto di Nanotecnologia - Sede Secondaria di Bari c/o Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70126 Bari, Italy.

Water pollution is a significant worldwide problem, and research studies in this field are still in progress to find strategies for removing pollutants from water. Among the others, adsorption process seems to exhibit several advantages, especially when biomasses are in use. This work proposes biochar from olive pomace pyrolysis for adsorbing contaminants from water, in synergistic combination with TiO, for constituting water-stable and recyclable composite chitosan-based sponges.

View Article and Find Full Text PDF

The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions.

View Article and Find Full Text PDF

A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!