Inhibitory activity and antioomycete mechanism of citral against Phytophthora capsici.

Pestic Biochem Physiol

College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China. Electronic address:

Published: September 2024

The natural terpenoid citral has antifungal activity against multiple fungi, but its bioactivity against oomycetes is unclear. Therefore, this study investigated the antioomycete activity and mechanism of citral against Phytophthora capsici, a highly destructive invasive oomycete. Results showed that citral not only had a great inhibition on the mycelial growth of P. capsici (EC = 94.15 mg/L), but also had a significant inhibition on multiple spores, such as sporangia formation, zoospore discharge and zoospore germination. Citral at 4000 mg/L exhibited favorable protective (73.33%) and curative efficacy (55.11%) against pepper Phytophthora blight. Citral significantly damaged the hyphal morphology, disrupted the cell membrane integrity, increased the permeability of cell membrane, and increased the glycerol content in P. capsici. A total of 250 upregulated and 288 downregulated proteins were identified in iTRAQ-based quantitative proteomic analysis. Downregulated proteins were mostly enriched in pathways of ABC transporters, cyanoamino acid metabolism and starch and sucrose metabolism, suggesting an inhibition of citral on transmembrane transporter (e.g., ABC transporters) and pathogenicity (e.g., β-glucosidases) proteins. Upregulated proteins were enriched in biosynthesis of unsaturated fatty acids, pyruvate metabolism and glycolysis/gluconeogenesis, suggesting an activation of citral on energy generation proteins, including acyl-CoA oxidase, D-lactate dehydrogenase, pyruvate kinase, acetyl-CoA synthetase and phosphoenolpyruvate carboxykinase. Biochemical and iTRAQ analysis suggested that cell membrane may be the target of citral in P. capsici.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2024.106067DOI Listing

Publication Analysis

Top Keywords

cell membrane
12
citral
9
mechanism citral
8
citral phytophthora
8
phytophthora capsici
8
downregulated proteins
8
proteins enriched
8
abc transporters
8
capsici
5
proteins
5

Similar Publications

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!