Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Changes in dietary patterns and living habits have led to an increasing number of individuals with elevated cholesterol levels. Excessive consumption of high-cholesterol foods can disrupt the body's lipid metabolism. Numerous studies have firmly established the cholesterol-lowering effects of probiotics and prebiotics, with evidence showing that the synergistic use of synbiotics is functionally more potent than using probiotics or prebiotics alone. Currently, the screening strategy involves screening prebiotics for synbiotic development with probiotics as the core. However, in comparison to probiotics, there are fewer types of prebiotics available, leading to limited resources. Consequently, the combinations of synbiotics obtained are restricted, and probiotics and prebiotics are only relatively suitable. Therefore, in this study, a novel synbiotic screening strategy with prebiotics as the core was developed. The synbiotic combination of Lactobacillus rhamnosus S_82 and xylo-oligosaccharides was screened from the intestinal tract of young people through five generations of xylo-oligosaccharides. Subsequently, the cholesterol-lowering ability of the medium was simulated, and the two carbon sources of glucose and xylo-oligosaccharides were screened out. The results showed that synbiotics may participate in cholesterol-lowering regulation by down-regulating the expression of NPC1L1 gene, down-regulating ACAT2 and increasing the expression of ABCG8 gene in vitro through cell adsorption and cell absorption in vitro, and regulating the intestinal microbiota. Synbiotics hold promise as potential candidates for the prevention of hypercholesterolemia in humans and animals, and this study providing a theoretical foundation for the development of new synbiotic products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114976 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!