Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making.

Brain Stimul

Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

Published: October 2024

AI Article Synopsis

  • Navigational decision-making tasks like spatial working memory (SWM) depend on integrating information from various brain regions, particularly the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), which show significant theta rhythm interactions.
  • A closed-loop neurofeedback (CLNF) system was used to boost theta power in the mPFC, hypothesizing that this enhancement would improve SWM performance in animal models.
  • Results demonstrated increased theta power and synchronization between mPFC and vHPC in the CL group, which correlated with better spatial decision-making, indicating the importance of theta oscillations in cognitive functions and the potential of CLNF systems for studying brain dynamics.

Article Abstract

Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2024.09.005DOI Listing

Publication Analysis

Top Keywords

theta
11
cortical theta
8
theta oscillations
8
neural dynamics
8
navigational decision-making
8
theta rhythm
8
theta power
8
power mpfc
8
swm performance
8
swm
5

Similar Publications

Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.

View Article and Find Full Text PDF

Background: How tauopathy disrupts direct entorhinal cortex (EC) inputs to CA1 and their plasticity is understudied, despite its critical role in memory. Moreover, dysfunction of lateral EC (LEC) input is less clear, despite its relevance to early Alzheimer's disease pathogenesis. Here we examined how tau impacts long-term potentiation (LTP) of LEC→CA1 input in a transgenic model of tauopathy.

View Article and Find Full Text PDF

Background: Altered neuronal timing and synchrony are biomarkers for Alzheimer's disease (AD) and correlate with memory impairments. Electrical stimulation of the fornix, the main fibre bundle connecting the hippocampus to the septum, has emerged as a potential intervention to restore network synchrony and memory performance in human AD and mouse models. However, electrical stimulation is non-specific and may partially explain why fornix stimulation in AD patients has yielded mixed results.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Amsterdam, Netherlands.

Background: Amyotrophic lateral sclerosis (ALS) with only motor impairment (ALS-pure motor) and the behavioral variant of frontotemporal dementia (bvFTD) are hypothesized to be the extreme ends of the ALS-bvFTD spectrum. This spectrum also encompasses ALS patients with mild to severe cognitive impairment (ALSci) and/or behavioral impairment (ALSbi), including ALS with concomitant bvFTD. In a previous study, using magnetoencephalography (MEG), in early symptomatic ALS patients we showed resting-state functional connectivity changes in frontal, limbic and subcortical regions that overlap considerably with bvFTD.

View Article and Find Full Text PDF

Background: Alzheimer's disease is defined by the pathological aggregation of amyloid-beta and hyperphosphorylated tau. AD patients often exhibit other symptoms like metabolic and sleep dysfunction. Currently, it is unclear if impairments are a cause or consequence of Aβ or tau aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!