Organic ultraviolet filters (UVFs) are known to contaminate many aquatic ecosystems, with much environmental contamination attributed to the use of UVF-containing skin care products such as sunscreens during aquatic recreation. Most studies addressing the impact of sunscreen contamination have focused on the effects of UVFs under the assumption that they are the primary contaminants of concern from sunscreen pollution; however, the extent to which the toxicity of UVFs is representative of the environmental impacts of the whole sunscreen mixture is unknown. To address this knowledge gap, this study compared the mixture toxicity of five off-the-shelf sunscreen spray products containing the UVFs avobenzone, homosalate, octisalate, octocrylene and oxybenzone to the toxicity of each UVF in isolation to the freshwater invertebrate Daphnia magna. It was found that sunscreen toxicity was not proportional to their total UVF content, as the sunscreen containing the fewest UVFs was approximately equivalent to the sunscreen with the most UVFs, causing ≥90 % mortality and inhibiting all daphnid reproduction over 21 d exposures. Sunscreen toxicity was typically lower than expected when compared to the toxicity of each individual UVF within the mixture, as some sunscreens causing ≤20 % mortality contained octocrylene and/or oxybenzone at concentrations exceeding those which caused 90 % mortality during exposure to the UVF alone. Despite sunscreens causing large impairments in reproduction, growth and metabolism, poor correlations existed between the severity of most sublethal endpoints with respect to the measured UVF content of each sunscreen. Overall, these results indicate that potential antagonistic relationships between sunscreen ingredients can greatly reduce the toxicity of UVFs, creating more uncertainty regarding the level of threat that UVFs pose to the environment as a result of sunscreen contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124953DOI Listing

Publication Analysis

Top Keywords

sunscreen
11
toxicity
8
toxicity individual
8
ultraviolet filters
8
daphnia magna
8
uvfs
8
sunscreen contamination
8
toxicity uvfs
8
sunscreen toxicity
8
uvf content
8

Similar Publications

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Background: Sunburn and intermittent sun exposure elevate melanoma skin cancer risk. Sun protection behaviours, including limiting sun exposure, seeking shade, wearing protective gear, and using sunscreen, help mitigate excessive sun exposure. Smartphone apps present a promising platform to enhance these behaviours.

View Article and Find Full Text PDF

People who spend time at the beach at increased risk for ultraviolet light (UV) exposure. This review assessed skin cancer-related knowledge, attitudes, beliefs, and prevention practices among beachgoers and sunbathers at the beach. Relevant articles were search in the following electronic databases: PubMed (Medline), Cumulative Index to Nursing and Allied Health (CINAHL), ERIC, and PsycINFO.

View Article and Find Full Text PDF

New cinnamic acid sugar esters as potential UVB filters: Synthesis, cytotoxicity, and physicochemical properties.

Carbohydr Res

January 2025

Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy. Electronic address:

Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3.

View Article and Find Full Text PDF

Background: Recommending comprehensive personalized photoprotection requires an accurate assessment of the patient's skin, including phototype, lifestyle, exposure conditions, environmental factors, and concomitant cutaneous conditions as well as deep knowledge of the available options: sunscreen ingredients (type of filters, spectrum coverage, sun protection factor, enhanced active ingredients), oral photoprotection, and other methods of sun protection and avoidance.

Objectives: To establish consensus-based recommendations endorsed by an international panel of experts for personalized medical photoprotection recommendations that are applicable globally.

Methods: A two-round Delphi study was designed to determine the degree of agreement and relevance of aspects related to personalized medical photoprotection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!