The cell cycle is a tightly regulated, dynamic process controlled by multiple checkpoints. When the prevention of cell cycle progression is needed, key effectors such as members of the p21 (CIP/KIP) inhibit cyclin-dependent kinases (CDKs). It is accepted that p21 does not sense DNA damage and that stress signals affect p21 indirectly. A plethora of DNA damaging events activate the tumor suppressor p53, which in turn transcriptionally activates p21, steeply changing its levels to reach CDK inhibition. The levels of p21 are also controlled by phosphorylation and ubiquitination events, which are relevant as they modulate p21 activity, localization, and stability. Intriguingly, here we report the first evidence of the direct control of p21 cell proliferation inhibition by DNA damaging signals. Specifically, we have identified a redox regulating mechanism that controls p21 capacity to reduce cell proliferation. Using the human p21 protein, we identified two cysteine-switches that independently regulate its cyclin-binding and linker (LH) modules respectively. Additionally, we provide a mechanistic explanation of how reactive cysteines embedded in unstructured regions of intrinsically disordered proteins respond to ROS without the guidance of protein structure, contributing to a vastly unexplored area of research. Cellular experiments utilizing p21KID mutants that disrupt disulfide-based switches demonstrate their impact on the capacity of p21 to inhibit cell cycle progression, thus highlighting the functional relevance of our findings. Furthermore, our investigation reveals that reactive cysteine residues are highly conserved across the Kinase Inhibitory Domain (KID) sequences of p21 proteins from higher eukaryotes, and the p27 and p57 human paralogs. We propose that the presence of conserved regulatory cysteines within the KIDs of p21 family members from multiple taxa provides those proteins with the capability for directly sensing ROS, enabling the direct regulation of cyclin kinase activity by ROS levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2024.09.013 | DOI Listing |
Sci Adv
January 2025
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.
View Article and Find Full Text PDFPLoS One
January 2025
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.
The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.
View Article and Find Full Text PDFMinerva Dent Oral Sci
January 2025
Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.
Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.
Discov Oncol
January 2025
Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.
Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.
Br J Dermatol
January 2025
Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!