The recurrence of glioma after treatment has remained an intractable problem for many years. Recently, numerous studies have explored the pivotal role of the mouse double minute 2 (MDM2)/p53 pathway in cancer treatment. Lysine phosphate phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a newly discovered tumor suppressor, has been confirmed in numerous studies on tumors, but its role in glioma remains poorly understood. Expression matrices in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were analyzed using gene set enrichment analysis (GSEA), revealing significant alterations in the p53 pathway among glioma patients with high LHPP expression. The overexpression of LHPP in glioma cells resulted in a reduction in cell proliferation, migration, and invasive ability, as well as an increase in apoptosis and alterations to the cell cycle. The present study has identified a novel inhibitory mechanism of LHPP against glioma, both in vivo and in vitro. The results demonstrate that LHPP exerts anti-glioma effects via the MDM2/p53 pathway. These findings may offer a new perspective for the treatment of glioma in the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2024.167509DOI Listing

Publication Analysis

Top Keywords

mdm2/p53 pathway
12
glioma
8
cell cycle
8
numerous studies
8
genome atlas
8
lhpp glioma
8
lhpp
6
unlocking potential
4
potential lhpp
4
lhpp inhibiting
4

Similar Publications

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells.

Sci Rep

January 2025

NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.

View Article and Find Full Text PDF

Quantitative study on hepatic genotoxicity of neodymium and its molecular mechanisms based on Benchmark Dose method.

Front Pharmacol

December 2024

Institute of Chemical Toxicity Testing/NHC Specialty Laboratory of Food, Safety Risk Assessment and Standard Development/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.

Introduction: Neodymium, a rare earth element, has been shown to induce genotoxicity in mice, but the molecular mechanisms behind this effect are not fully understood. This study aims to investigate the genotoxic effects of intragastric administration of neodymium nitrate (Nd(NO)) over 28 consecutive days and to elucidate the underlying molecular mechanisms.

Methods: We detected the content of neodymium in mouse liver tissue using ICP-MS and assessed the percentage of tail DNA in mouse hepatocytes using the alkaline comet assay to evaluate genotoxicity.

View Article and Find Full Text PDF

Anlotinib enhances the pro-apoptotic effect of APG-115 on acute myeloid leukemia cell lines by inhibiting the P13K/AKT signaling pathway.

Leuk Res

December 2024

Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008,  China; The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China. Electronic address:

Background: APG-115 is a novel small-molecule selective inhibitor that destabilizes the p53-MDM2 complex and activates p53-mediated apoptosis in tumor cells. Anlotinib inhibits tumor angiogenesis and promotes apoptosis. In this study, we investigated the apoptotic effect and potential mechanism of APG-115 and anlotinib combination on AML cell lines with different p53 backgrounds.

View Article and Find Full Text PDF

Phlecarinatones H-N: Abietane-type diterpenoids from Phlegmariurus carinatus with proliferative inhibitory effect on U251 glioblastoma cells.

Phytochemistry

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, 2024SSY06291, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; School of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China. Electronic address:

Thirteen abietane-type diterpenoids, including seven previously undescribed compounds and six known analogs, were isolated from the root and aerial parts of Phlegmariurus carinatus. Their structures were elucidated by comprehensive spectroscopic data analysis (UV, IR, NMR, and HRESIMS) and quantum chemical calculations (calculated ECD or C NMR). Notably, these compounds exhibited high structural diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!