Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after stroke.

Ageing Res Rev

Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China. Electronic address:

Published: November 2024

The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function. Post-translational modifications (PTMs) have been recognized as crucial regulatory mechanisms in ischemic and hemorrhagic stroke-induced brain injury. These PTMs include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and succinylation. This comprehensive review delves into recent research on the PTMs landscape associated with neuroinflammation and neuronal death specific to cerebral ischemia, ICH, and SAH. This review aims to explain the role of PTMs in regulating pathologic mechanisms and present critical techniques and proteomic strategies for identifying PTMs. This knowledge helps us comprehend the underlying mechanisms of stroke injury and repair processes, leading to the development of innovative treatment strategies. Importantly, this review underscores the significance of exploring PTMs to understand the pathophysiology of stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2024.102489DOI Listing

Publication Analysis

Top Keywords

neuroinflammation neuronal
8
neuronal death
8
cerebral ischemia
8
pathophysiology stroke
8
ptms
6
stroke
5
unraveling protein
4
protein post-translational
4
post-translational modification
4
modification landscape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!