Structural and functional analysis of a bile salt hydrolase from the bison microbiome.

J Biol Chem

Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. Electronic address:

Published: October 2024

The bile salt hydrolases (BSHs) are significant constituents of animal microbiomes. An evolving appreciation of their roles in health and disease has established them as targets of pharmacological inhibition. These bacterial enzymes belong to the N-terminal nucleophile superfamily and are best known to catalyze the deconjugation of glycine or taurine from bile salts to release bile acid substrates for transformation and or metabolism in the gastrointestinal tract. Here, we identify and describe the BSH from a common member of the Plains bison microbiome, Arthrobacter citreus (BSH). Steady-state kinetic analyses demonstrated that BSH is a broad-spectrum hydrolase with a preference for glycine-conjugates and deoxycholic acid (DCA). Second-order rate constants (k/K) for BSH-catalyzed reactions of relevant bile salts-glyco- and tauro-conjugates of cholic acid and DCA- varied by ∼30-fold and measured between 1.4 × 10 and 4.3 × 10 Ms. Interestingly, a pan-BSH inhibitor named AAA-10 acted as a slow irreversible inhibitor of BSH with a rate of inactivation (k) of ∼2 h and a second order rate constant (k/K) of ∼24 Ms for the process. Structural characterization of BSH reacted with AAA-10 showed covalent modification of the N-terminal cysteine nucleophile, providing molecular details for an enzyme-stabilized product formed from this mechanism-based inhibitor's α-fluoromethyl ketone warhead. Structural comparison of the BSHs and BSH:inhibitor complexes highlighted the plasticity of the steroid-binding site, including a flexible loop that is variable across well-studied BSHs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbc.2024.107769DOI Listing

Publication Analysis

Top Keywords

bile salt
8
bison microbiome
8
bile
5
bsh
5
structural functional
4
functional analysis
4
analysis bile
4
salt hydrolase
4
hydrolase bison
4
microbiome bile
4

Similar Publications

Gastrointestinal absorption and its regulation of hawthorn leaves flavonoids.

Sci Rep

January 2025

School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.

Hawthorn leave flavonoids (HLF) are widely used as an herb or dietary supplements for cardio-cerebrovascular diseases. However, its gastrointestinal absorption behavior and mechanism have not been disclosed. In this study, gastrointestinal absorption and its regulation of 4''-O-glucosylvitexin (GLV), 2''-O-rhamnosylvitexin (RHV), vitexin (VIT), rutin (RUT) and hyperoside (HP) in HLF were investigated using in vitro, in situ and in vivo models.

View Article and Find Full Text PDF

Background: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.

View Article and Find Full Text PDF

Donor-derived fecal micrrasobiota treatments are efficacious in preventing recurrent Clostridioides difficile infection (rCDI), but they have inherently variable quality attributes, are difficult to scale and harbor the risk of pathogen transfer. In contrast, VE303 is a defined consortium of eight purified, clonal bacterial strains developed for prevention of rCDI. In the phase 2 CONSORTIUM study, high-dose VE303 was well tolerated and reduced the odds of rCDI by more than 80% compared to placebo.

View Article and Find Full Text PDF

Whole genome analysis, detoxification of ochratoxin a and physiological characterization of a novel MM35 isolated from soil.

Front Microbiol

December 2024

College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, China.

Article Synopsis
  • Ochratoxin A (OTA) is a major global contaminant that affects food safety, and this study focuses on isolating probiotics capable of degrading OTA.
  • MM35, a newly identified strain, achieved an impressive 87.10% degradation of OTA within 48 hours and produced enzymes that contribute to this process.
  • The strain exhibits significant antibacterial properties and tolerance to harsh environments, making it a promising candidate for managing OTA contamination in food and feed industries.
View Article and Find Full Text PDF

Gut protects against fat deposition by enhancing secondary bile acid biosynthesis.

Imeta

December 2024

Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry College of Animal Science and Technology, Hunan Agricultural University Changsha China.

Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!