Peppers globally renowned for their distinctive spicy flavor, have attracted significant research attention, particularly in understanding spiciness regulation. While the activator MYB's role in spiciness regulation is well-established, the involvement of repressor MYB factors remains unexplored. This study identified the MYB4 transcription factor through RNA-seq and genome-wide analysis as being associated with spiciness. Consequently, CcMYB4-2 and CcMYB4-12 were cloned from Hainan Huangdenglong peppers, both exhibiting nuclear subcellular localization. qRT-PCR analysis revealed that CcMYB4-2/4-12 had high expression levels during the accumulation period of capsaicin, but there were differences in their peak expression levels, which may be related to the formation of pepper spiciness. Heterologous expression in Arabidopsis thaliana resulted in significantly elevated CcMYB4-2/4-12 expression levels and reduced lignin content. In CcMYB4-2 silenced plants, PAL expression remained unchanged, while PAL expression significantly increased in CcMYB4-12 silenced plants, leading to elevated lignin content and reduced capsaicin content. Yeast one-hybrid (Y1H) and dual luciferase reporter assays (DLR) demonstrated that CcMYB4-2/4-12 inhibited the transcription of CcPAL2 by binding to its promoter. Notably, CcMYB4-12 exhibited more pronounced inhibition. Therefore, it is hypothesized that CcMYB4-12 plays a pivotal role in regulating lignin and capsaicin biosynthesis. This study elucidates the molecular mechanism of MYB4 binding to the PAL promoter, providing a foundational understanding for analyzing phenylpropanoid metabolism and its diverse branches. KEY MESSAGE: Through functional verification analysis of the repressor CcMYB4, transcriptional regulation experiments revealed that CcMYB4 can bind to the CcPAL2 promoter, negatively regulating the capsaicin biosynthesis in Capsicum chinense fruits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135592 | DOI Listing |
Plant Foods Hum Nutr
December 2024
College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan, 8430070, China.
This study aimed to investigate the protective effect of a novel capsaicinoid glucoside (CG) against HO-induced oxidative stress in HepG2 cells and elucidate its underlying molecular mechanism. CG treatment significantly reduced HO-induced cell mortality and attenuated the production of lactate dehydrogenase and malondialdehyde in a dose-dependent manner. Moreover, CG drastically reduced the ROS levels 18.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
Purpose: Corneal pain is one of the most common eye symptoms caused by various types of epithelial injuries, including traumatic abrasion, chemical injury, ulcers, ultraviolet exposure, and infection. However, current therapeutic options for corneal pain are limited. In this study, we synthesized a novel quaternary ammonium compound, N-propylamiodarone bromide (NPA), and employed a rodent model of corneal injury to investigate whether NPA offers prolonged corneal analgesia through transient receptor potential vanilloid 1 (TRPV1) channel-mediated selective cellular entry, without hindering corneal epithelial recovery.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institution, Mirza, Assam, India.
Naga chilli (Capsicum chinense Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Medical Research and Development, Research Division, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
Aims: Chronic pain is a critical public health issue that severely impacts quality of life and poses significant treatment challenges, particularly due to the risk of adverse effects associated with pharmacological therapies. The search for effective non-invasive treatment alternatives has become increasingly relevant. Low-intensity focused ultrasound (LIFU) has been identified as an effective non-invasive strategy for pain management, although the underlying mechanism remains unclear.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Capsaicin is a polyphenol with a well-known anti-obesity potential, which could activate brown adipose tissue and promote the browning of white adipose tissue. Indeed, conventional proteomics have been used to investigate the browning effects of capsaicin on adipose tissue. However, the existence of a layer of white adipose tissue above the interscapular brown adipose tissue poses a great challenge to obtain intact interscapular brown adipose tissue without including adjacent white adipose tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!