An edible composite film was developed and applied for ready-to-eat sea cucumber storage to improve the product quality. The PAC film base is first prepared by mixing 0.5 % glycerin (GL) with 4 % polyvinyl alcohol (PVA) and 1 % arginine-modified chitosan (Arg-CTS) in the same volume. After the addition of nano-ZnO (ZnO) and thymol (Thy) to the PAC film base, the mechanical properties and functions were tested. Compared to the PAC film, the PAC-ZnO-ThyH composite film showed a 1.34-fold increase in the DPPH scavenging rate and a 2.19-fold increase in the ABTS scavenging rate. Contrary to the PAC film, the inhibition zone diameter of Escherichia coli and Staphylococcus aureus significantly increased by 2.35 and 4.08 folds in the PAC-Zno-ThyH film, respectively. After applying the PAC-ZnO-ThyH film to store ready-to-eat sea cucumber for 10 days, there was a significant reduction in weight loss, total volatile basic nitrogen (TVB-N), and lipid oxidation levels to 1.47 and 1.26 folds to the Ctrl group. After preservation, the hardness and chewiness of ready-to-eat sea cucumber were maintained at 1079.62 ± 138.86 N and 913.73 ± 175.79 N, respectively. The novel PAC-ZnO-ThyH composite film can be used as an active food packaging for promising seafood applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135587 | DOI Listing |
Adv Sci (Weinh)
January 2025
Haiping Fang, School of Physics, East China University of Science and Technology, Shanghai, 20023, China.
The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.
View Article and Find Full Text PDFMass Spectrom (Tokyo)
January 2025
JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan.
Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.
In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.
View Article and Find Full Text PDFNanoscale
January 2025
Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam-si, 13509, Republic of Korea.
The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China.
Radiative cooling, a passive cooling technology, functions by reflecting the majority of solar radiation (within the solar spectrum of 0.3-2.5 μm) and emitting thermal radiation (within the atmospheric windows of 8-13 μm and 16-20 μm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!