At present, many oil-water separation membranes are being developed to purify oily wastewater. However, oily wastewater often contains heavy metal, which are often difficult to dispose during separation. Furthermore, most of the oil-water separation membranes cannot be degraded after scrap, producing pollution to environment. Herein, the polyvinyl alcohol/chitosan@carnauba wax (PCGCW) membrane with heavy metal adsorption and biodegradation performance was acquired by electrospinning and spraying process. The acquired PCGCW membrane had excellent mechanical properties after crosslinking glutaraldehyde (GA). Furthermore, the composite membrane had excellent superhydrophobic property (WCA = 154°) with a rolling angle of 2°, due to the introduction of carnauba wax. Exhilaratingly, for emulsions with surfactant, it had a high separation flux with 19,217 L·m·h·bar and splendid an oil purity over 99.9 %. Besides, the efficiency of oil purity and separation flux remained stable even after 10 separations. In addition, the PCGCW membrane had the ability to adsorb heavy metals with adsorption capacity of 51-106 mg/g for Cu, Fe, Co ions. Foremost, the superhydrophobic PCGCW membrane was biodegradable, with degrading 29.76 % within 40 days. The prepared composite membrane had the advantages of low cost, high separation flux, great repeatability, adsorbable heavy metals and degradability, which had a vast application prospect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135603 | DOI Listing |
Int J Biol Macromol
November 2024
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China. Electronic address:
At present, many oil-water separation membranes are being developed to purify oily wastewater. However, oily wastewater often contains heavy metal, which are often difficult to dispose during separation. Furthermore, most of the oil-water separation membranes cannot be degraded after scrap, producing pollution to environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!