The underlying mechanisms of lead exposure-induced cochlear spiral ganglion neurons (SGNs) injury are not yet clear. This study explored whether ferroptosis is involved in lead-induced SGNs injury and investigated the mechanism of lead-induced iron overload in SGNs. A primary culture cell model of lead acetate-induced SGNs damage was established. The changes in levels of iron ions, reactive oxygen species, lipid peroxides, and glutathione in SGNs were measured after lead acetate intervention and ferroptosis inhibitors pre-treatment. The morphology of mitochondria was also observed, and the expression of ferroptosis marker genes glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), as well as iron metabolism-related proteins transferrin receptor protein 1 (TFR1), nuclear receptor coactivator 4 (NCOA4), heme oxygenase-1 (HO-1), and ferroportin (FPN) were detected. Results showed that lead acetate exposure induced SGNs injury in a time- and dose-dependent manner. Intracellular iron accumulation, increased levels of reactive oxygen species and lipid peroxide with decreased level of antioxidant capacity were occurred in SGNs after lead exposure. Meanwhile, decreased expressions of GPX4 and SLC7A11 and increased expressions of iron metabolism-related proteins (TFR1, NCOA4, and HO-1) were also found. Lead acetate intervention also caused mitochondrial shrinkage with blurred and fragmented morphology. Pre-treatment with ferroptosis inhibitors (Fer-1 and DFOM) significantly ameliorated lead-induced SGNs injury. In summary, lead exposure can induce ferroptosis in SGNs, the antioxidant defense system and iron metabolism disorder are involved in lead-induced SGNs ferroptosis. Thus, inhibiting ferroptosis may be a new strategy for preventing and treating lead exposure-related hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2024.153938 | DOI Listing |
ACS Nano
December 2024
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200438, China.
Intense noise poses a threat to spiral ganglion neurons (SGNs) in the inner ear, often resulting in limited axonal regeneration during noise injury and leading to noise-induced hearing loss (NIHL). Here, we propose an ultrasound-triggered nitric oxide (NO) release to enhance the sprouting and regeneration of injured axons in SGNs. We developed hollow silicon nanoparticles to load nitrosylated N-acetylcysteine, producing HMSN-SNO, which effectively protects NO from external interferences.
View Article and Find Full Text PDFFood Chem Toxicol
December 2024
Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China. Electronic address:
Cisplatin, a widely used chemotherapy drug, is notorious for causing ototoxicity, which leads to irreversible sensorineural hearing loss by damaging cochlear sensory hair cells (HCs), spiral ganglion neurons (SGNs), and the stria vascularis (SV). Mechanisms include DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammation, ultimately triggering cell death pathways like apoptosis, necroptosis, pyroptosis, or ferroptosis. Apigenin, a natural flavonoid found in various foods and beverages, possesses antioxidant, anti-inflammatory, and anti-tumor properties.
View Article and Find Full Text PDFBr J Pharmacol
February 2025
Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy.
Background And Purpose: Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity.
View Article and Find Full Text PDFToxicology
December 2024
Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, Hunan, China. Electronic address:
The underlying mechanisms of lead exposure-induced cochlear spiral ganglion neurons (SGNs) injury are not yet clear. This study explored whether ferroptosis is involved in lead-induced SGNs injury and investigated the mechanism of lead-induced iron overload in SGNs. A primary culture cell model of lead acetate-induced SGNs damage was established.
View Article and Find Full Text PDFJ Mol Med (Berl)
September 2024
Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany.
Cisplatin is a chemotherapeutic agent widely used to treat solid tumors. However, it can also be highly ototoxic, resulting in high-frequency hearing loss. Cisplatin causes degeneration of hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear, which are essential components of the hearing process and cannot be regenerated in mammals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!