As a typical polycyclic aromatic hydrocarbon (PAH), phenanthrene is often present in diverse environments, leading to severe environmental contamination. However, bacterial degradation plays a crucial role in remediating phenanthrene contamination and has been widely adopted. The widely distributed marine Roseobacter-clade bacteria are frequently found in phenanthrene-contaminated environments, but their catalyzing ability and related molecular mechanism have been rarely elucidated. Our previous work showed Ruegeria sp. PrR005 isolated from the Pearl River Estuary sediment could degrade phenanthrene and other PAHs. Integrated approaches including multi-omics and biochemical analysis were applied here to explore its catabolism mechanism. The genomic and transcriptomic analysis indicated that six new P450 monooxygenase proteins could be closely associated with phenanthrene degradation. Heterologous expression of P450 monooxygenase candidates revealed that PrR005_00615, PrR005_04282, PrR005_04577 have considerable activity in phenanthrene removal, with PrR005_00615 being the primary contributor. Further, the biochemical and metabolic analysis revealed that PrR005_00615 could catalyze phenanthrene to phenanthrene-9,10-epoxide by introducing an oxygen atom at 9,10-carbon positions, which functioned as a monooxygenase. The present study provides compelling evidences of a novel enzyme responsible for catalyzing the initial step of phenanthrene transformation in PrR005. These findings hold significant importance in unraveling the mechanism behind phenanthrene degradation by Roseobacter-clade bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135759 | DOI Listing |
Environ Monit Assess
December 2024
Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
Sex hormone homeostasis is crucial for the proper development of children and adolescents. Previous studies have indicated that exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) is linked to disruptions in sex hormone levels in this age group. However, there is limited research on the harm caused by exposure to chemical mixtures.
View Article and Find Full Text PDFJ Environ Sci Health B
January 2025
Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico.
Phenanthrene is classified as a priority environmental pollutant because of its impact on the environment and on human health as a mutagenic and carcinogenic agent. The aim of this study was isolated and identified new bacteria with the capability to degrade phenanthrene from Reynosa, Mexico. , , and had high tolerant to phenanthrene (250 mg L).
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea.
Antiviral agents that target the viral envelope surface glycoproteins can disrupt the interactions between the viral glycoproteins and host cell receptors, thereby preventing viral entry into host cells. However, the mechanisms underlying glycoprotein processing and cellular trafficking have not been fully elucidated. In this study, we aimed to investigate the mechanism of action of cryptotanshinone (CTN) and dihydrotanshinone I (DTN) as inhibitors of viral glycoprotein trafficking, by assessing their inhibitory action on syncytium formation and cytopathic effects.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates both oxidative stress and mitochondrial biogenesis. Our previous study reported the cardioprotection of calycosin against triptolide toxicity through promoting mitochondrial biogenesis by activating nuclear respiratory factor 1 (NRF1), a coregulatory effect contributed by Nrf2 was not fully elucidated. This work aimed at investigating the involvement of Nrf2 in mitochondrial protection and elucidating Nrf2/NRF1 signaling crosstalk on amplifying the detoxification of calycosin.
View Article and Find Full Text PDFJ Mol Histol
December 2024
The Departments of Medical Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
Traditional antidiabetic treatments often carry the risk of beta-cell exhaustion, highlighting the need for therapies that promote beta-cell regeneration. This study investigates the comparative effects of Liraglutide, naltrexone/bupropion (NTX + BUP), and caloric restriction on metabolic control and beta-cell regeneration in a rat model of obese type 2 diabetes. Fifty male albino rats were randomized into five groups: normal control, diabetic control, diabetic + caloric restriction (50%), diabetic + NTX + BUP (4 mg/45 mg /kg/day orally), and diabetic + liraglutide (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!