Autophagic cell death induced by pH modulation for enhanced iron-based chemodynamic therapy.

J Colloid Interface Sci

Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China. Electronic address:

Published: January 2025

Iron-based chemodynamic therapy (CDT) exhibits commendable biocompatibility and selectivity, but its efficacy is constrained by the intracellular pH of tumors. To overcome this obstacle, we constructed a silica delivery platform loaded with autophagy-inducing reagents (rapamycin, RAPA) and iron-based Fenton reagents (FeO). This platform was utilized to explore a novel strategy that leverages autophagy to decrease tumor acidity, consequently boosting the effectiveness of CDT. Both in vitro and in vivo experiments revealed that RAPA prompted the generation of acidic organelles (e.g., autophagic vacuoles and autophagosomes), effectively changing the intracellular pH in the tumor microenvironment. Furthermore, RAPA-induced tumor acidification significantly amplified the efficacy of FeO-based Fenton reactions, consequently increasing the effectiveness of FeO-based CDT. This innovative approach, which leverages the interplay between autophagy induction and iron-based CDT, shows promise in overcoming the limitations posed by tumor pH, thus offering a more efficient approach to tumor treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.09.093DOI Listing

Publication Analysis

Top Keywords

iron-based chemodynamic
8
chemodynamic therapy
8
tumor
5
autophagic cell
4
cell death
4
death induced
4
induced modulation
4
modulation enhanced
4
iron-based
4
enhanced iron-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!