Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Monitoring seizure control metrics is key to clinical care of patients with epilepsy. Manually abstracting these metrics from unstructured text in electronic health records (EHR) is laborious. We aimed to abstract the date of last seizure and seizure frequency from clinical notes of patients with epilepsy using natural language processing (NLP).
Methods: We extracted seizure control metrics from notes of patients seen in epilepsy clinics from two hospitals in Boston. Extraction was performed with the pretrained model RoBERTa_for_seizureFrequency_QA, for both date of last seizure and seizure frequency, combined with regular expressions. We designed the algorithm to categorize the timing of last seizure ("today", "1-6 days ago", "1-4 weeks ago", "more than 1-3 months ago", "more than 3-6 months ago", "more than 6-12 months ago", "more than 1-2 years ago", "more than 2 years ago") and seizure frequency ("innumerable", "multiple", "daily", "weekly", "monthly", "once per year", "less than once per year"). Our ground truth consisted of structured questionnaires filled out by physicians. Model performance was measured using the areas under the receiving operating characteristic curve (AUROC) and precision recall curve (AUPRC) for categorical labels, and median absolute error (MAE) for ordinal labels, with 95 % confidence intervals (CI) estimated via bootstrapping.
Results: Our cohort included 1773 adult patients with a total of 5658 visits with reported seizure control metrics, seen in epilepsy clinics between December 2018 and May 2022. The cohort average age was 42 years old, the majority were female (57 %), White (81 %) and non-Hispanic (85 %). The models achieved an MAE (95 % CI) for date of last seizure of 4 (4.00-4.86) weeks, and for seizure frequency of 0.02 (0.02-0.02) seizures per day.
Conclusions: Our NLP approach demonstrates that the extraction of seizure control metrics from EHR is feasible allowing for large-scale EHR research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499027 | PMC |
http://dx.doi.org/10.1016/j.eplepsyres.2024.107451 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!