Personalized selection of unequal sub-arc collimator angles in VMAT for multiple brain metastases.

Appl Radiat Isot

School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China. Electronic address:

Published: December 2024

Purpose: Investigating the effects of unequal sub-arc personalized collimator angle selection on the quality of Volumetric Modulated Arc Therapy (VMAT) plans for treating multiple brain metastases.

Methods: This study included 21 patients, each with 2-4 target volumes of multiple brain metastases. Two stereotactic radiotherapy (SRT) approaches were utilized: sub-arc collimator VMAT (SAC-VMAT) and fixed collimator VMAT (FC-VMAT). In the SAC-VMAT group, multi-leaf collimators (MLC) shaped the target area, dividing the full arc into four unequal sub-arcs under the beam's eye view (BEV). Each sub-arc had an appropriate collimator angle selected to mitigate 'island blocking problems'. Conversely, the FC-VMAT group used a fixed collimator angle of 15° or 345°. A comparative analysis of the dosimetric parameters of the target volumes and normal tissues, along with the monitor units (MU), was conducted between the two groups.

Results: The mean dose and dose-volume to normal brain tissue (2-26 Gy, with a step of 2 Gy) were significantly lower in the SAC-VMAT group (P < 0.01). There was no statistical difference between the two groups in dose to the target volumes, conformity index (CI), homogeneity index (HI), and other normal tissues (P > 0.05). Compared with the FA-VMAT group, the SAC-VMAT group significantly reduced the gradient index (GI) (4.5 ± 0.59 vs 5.2 ± 0.75, P < 0.001) and MU (1774.33 ± 181.77 vs 2001.0 ± 344.86, P < 0.001). Notably, with an increase in the number of PTV, the SAC-VMAT group demonstrated more significant improvements in the dose-volume of normal brain tissue, GI, and MU.

Conclusions: In this study, personalized selection of the unequal sub-arc collimator angle ensured the prescribed dose to the PTV, CI, and HI, while significantly reducing the GI, MU, and the dose to normal brain tissue in the VMAT plan for multi-target brain metastases in the cohort of cases with 2-4 target volumes. Particularly as the number of targets increase, the advantages of this method become more pronounced.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2024.111513DOI Listing

Publication Analysis

Top Keywords

multiple brain
12
collimator angle
12
sac-vmat group
12
unequal sub-arc
8
sub-arc collimator
8
brain metastases
8
target volumes
8
collimator vmat
8
fixed collimator
8
collimator
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!