Effects of ipsilateral, contralateral, and bilateral noise precursors on psychoacoustical tuning curves in humans.

Hear Res

Instituto de Neurociencias de Castilla y León, Universidad de Salamanca 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca 37007 Salamanca, Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca 37007 Salamanca, Spain. Electronic address:

Published: November 2024

Cochlear tuning and hence auditory frequency selectivity are thought to change in noisy environments by activation of the medial olivocochlear reflex (MOCR). In humans, auditory frequency selectivity is often assessed using psychoacoustical tuning curves (PTCs), a plot of the level required for pure-tone maskers to just mask a fixed-level pure-tone probe as a function of masker frequency. Sometimes, however, the stimuli used to measure a PTC are long enough that they can activate the MOCR by themselves and thus affect the PTC. Here, PTCs for probe frequencies of 500 Hz and 4 kHz were measured in forward masking using short maskers (30 ms) and probes (10 ms) to minimize the activation of the MOCR by the maskers or the probes. PTCs were also measured in the presence of long (300 ms) ipsilateral, contralateral, and bilateral broadband noise precursors to investigate the effect of the ipsilateral, contralateral, and bilateral MOCR on PTC tuning. Four listeners with normal hearing participated in the experiments. At 500 Hz, ipsilateral and bilateral precursors sharpened the PTCs by decreasing the thresholds for maskers with frequencies at or near the probe frequency with minimal effects on thresholds for maskers remote in frequency from the probe. At 4 kHz, by contrast, ipsilateral and bilateral precursors barely affected thresholds for maskers near the probe frequency but broadened PTCs by reducing thresholds for maskers far from the probe. Contralateral precursors barely affected PTCs. An existing computational model was used to interpret the results. The model suggested that despite the apparent differences, the pattern of results is consistent with the ipsilateral and bilateral MOCR inhibiting the cochlear gain similarly at the two probe frequencies and more strongly than the contralateral MOCR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2024.109111DOI Listing

Publication Analysis

Top Keywords

thresholds maskers
16
ipsilateral contralateral
12
contralateral bilateral
12
ipsilateral bilateral
12
noise precursors
8
psychoacoustical tuning
8
tuning curves
8
auditory frequency
8
frequency selectivity
8
probe frequencies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!