Objective: This study aimed to quantitatively evaluate the inter-platform reproducibility and longitudinal acquisition repeatability of MRI radiomics features in Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted (T2W), and T1-weighted (T1W) sequences on MR-Linac systems using an American College of Radiology (ACR) phantom.
Materials And Methods: This study used two MR-Linac systems (A and B) in different cancer centers. The ACR phantom was scanned on system A daily for 30 consecutive days to evaluate longitudinal repeatability. Additionally, retest data were collected after repositioning the phantom. Inter-platform reproducibility was assessed by conducting scans under identical conditions using system B. Regions of interest were delineated on the T1W sequence from system A and mapped to other sequences via rigid registration. Intra-observer and inter-observer comparisons were conducted. Repeatability and reproducibility were assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Robust radiomics features were identified based on ICC>0.9 and CV<10 %.
Results: Analysis showed that a higher proportion of radiomics features derived from longitudinal FLAIR sequence (51.65 %) met robustness criteria compared to T2W (48.35 %) and T1W (43.96 %). Additionally, more inter-platform features from the FLAIR sequence (62.64 %) were robust compared to T2W (42.86 %) and T1W (39.56 %). Test-retest and intra-observer repeatability were excellent across all sequences, with a median ICC of 0.99 and CV<5%. However, inter-observer reproducibility was inferior, especially for the T1W sequence.
Conclusions: Different sequences show variations in repeatability and reproducibility. The FLAIR sequence demonstrated advantages in both longitudinal repeatability and inter-platform reproducibility. Caution is warranted when interpreting data, particularly in longitudinal or multiplatform radiomics studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2024.111735 | DOI Listing |
iScience
January 2025
Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, China.
To predict local progression after microwave ablation (MWA) in patients with stage I non-small cell lung cancer (NSCLC), we developed a CT-based radiomics model. Postoperative CT images were used. The intraclass correlation coefficients, two-sample t-test, least absolute shrinkage and selection operator (LASSO) regression, and Pearson correlation analysis were applied to select radiomics features and establish radiomics score.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shang tang Road, Hangzhou, Zhejiang, 310011, China.
Background: This study aims to evaluate the predictive usefulness of a habitat radiomics model based on ultrasound images for anticipating lateral neck lymph node metastasis (LLNM) in differentiated thyroid cancer (DTC), and for pinpointing high-risk habitat regions and significant radiomics traits.
Methods: A group of 214 patients diagnosed with differentiated thyroid carcinoma (DTC) between August 2021 and August 2023 were included, consisting of 107 patients with confirmed postoperative lateral lymph node metastasis (LLNM) and 107 patients without metastasis or lateral cervical lymph node involvement. An additional cohort of 43 patients was recruited to serve as an independent external testing group for this study.
Radiol Phys Technol
January 2025
Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included.
View Article and Find Full Text PDFInsights Imaging
January 2025
Medical Research Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, P. R. China.
Objective: To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS).
Methods: A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses.
Am J Cancer Res
December 2024
Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200011, China.
Breast cancer is one of the malignant tumors that seriously threaten women's health, and early diagnosis and detection of breast cancer are crucial for effective treatment. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an important diagnostic tool that allows for the dynamic observation of blood flow characteristics of breast tumors, including small lesions within the affected tissue. Currently, it is widely used in clinical practice and has been shown promising prospects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!