RNA degradation is a central process required for transcriptional regulation. Eventually, this process degrades diribonucleotides into mononucleotides by specific diribonucleases. In Escherichia coli, oligoribonuclease (Orn) serves this function and is unique as the only essential exoribonuclease. Yet, related organisms, such as Pseudomonas aeruginosa, display a growth defect but are viable without Orn, contesting its essentiality. Here, we take advantage of P. aeruginosa orn mutants to screen for suppressors that restore colony morphology and identified yciV. Purified YciV (RNase AM) exhibits diribonuclease activity. While RNase AM is present in all γ-proteobacteria, phylogenetic analysis reveals differences that map to the active site. RNase AM expression in E. coli eliminates the necessity of orn. Together, these results show that diribonuclease activity prevents toxic diribonucleotide accumulation in γ-proteobacteria, suggesting that diribonucleotides may be utilized to monitor RNA degradation efficacy. Because higher eukaryotes encode Orn, these observations indicate a conserved mechanism for monitoring RNA degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528712PMC
http://dx.doi.org/10.1016/j.celrep.2024.114759DOI Listing

Publication Analysis

Top Keywords

diribonuclease activity
12
rna degradation
12
toxic diribonucleotide
8
diribonucleotide accumulation
8
orn
5
activity eliminates
4
eliminates toxic
4
accumulation rna
4
degradation central
4
central process
4

Similar Publications

Diribonuclease activity eliminates toxic diribonucleotide accumulation.

Cell Rep

September 2024

Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA. Electronic address:

RNA degradation is a central process required for transcriptional regulation. Eventually, this process degrades diribonucleotides into mononucleotides by specific diribonucleases. In Escherichia coli, oligoribonuclease (Orn) serves this function and is unique as the only essential exoribonuclease.

View Article and Find Full Text PDF

Nano-RNases: oligo- or dinucleases?

FEMS Microbiol Rev

November 2022

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 United States.

Diribonucleotides arise from two sources: turnover of RNA transcripts (rRNA, tRNA, mRNA, and others) and linearization of cyclic-di-nucleotide signaling molecules. In both cases, there appears to be a requirement for a dedicated set of enzymes that will cleave these diribonucleotides into mononucleotides. The first enzyme discovered to mediate this activity is oligoribonuclease (Orn) from Escherichia coli.

View Article and Find Full Text PDF

Degradation of RNA polymers, an ubiquitous process in all cells, is catalyzed by specific subsets of endo- and exoribonucleases that together recycle RNA fragments into nucleotide monophosphate. In γ-proteobacteria, 3-'5' exoribonucleases comprise up to eight distinct enzymes. Among them, Oligoribonuclease (Orn) is unique as its activity is required for clearing short RNA fragments, which is important for cellular fitness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!