Molecular one-dimensional (1D) electron systems have attracted much attention due to their unique electronic state, physical and chemical properties derived from high-aspect-ratio structures. Among 1D materials, mixed-valence halogen-bridged transition-metal chain complexes (MX-chains) based on coordination assemblies are currently of particular interest because their electronic properties, such as mixed-valence state and band gap, can be controlled by substituting components and varying configurations. In particular, chemistry has recently noted that dimensionally extending MX-chains through organic rung ligands can introduce and modulate electronic coupling of metal atoms between chains, i. e., interchain interactions. In this review, for the first time, we highlight the recent progress on MX systems from the viewpoint of dimensionally extending from 1D chain to ladder and nanotube, mainly involving structural design and electronic properties. Overall, dimensional extension can not only tune the electronic properties of MX-chain, but also build the unique platform for studying transport dynamics in confined space, such as proton conduction. Based on these features, we envision that the MX-chain systems provide valuable insights into deep understanding of 1D electron systems, as well as the potential applications such as nanoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402583 | DOI Listing |
Nanotechnology
January 2025
Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Bloco 922, 60455-900, Fortaleza, 60455-900, BRAZIL.
We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CERN, Geneva, Switzerland.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Nanobubbles wield a significant influence over the electronic properties of 2D materials, showing diverse applications ranging from flexible devices to strain sensors. Here, we reveal that a strongly correlated phenomenon, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!