Multicellular spheroids and patient-derived organoids find many applications in fundamental research, drug discovery, and regenerative medicine. Advances in the understanding and recapitulation of organ functionality and disease development require the generation of complex organoid models, including organoids with diverse morphologies. Microfluidics-based cell culture platforms enable time-efficient confined organoid generation. However, the ability to form organoids with different shapes with a subsequent transfer from microfluidic devices to unconstrained environments for studies of morphology-dependent organoid growth is yet to be demonstrated. Here, a microfluidic platform is introduced that enables high-fidelity formation and addressable release of breast cancer organoids with diverse shapes. Using this platform, the impact of organoid morphology on their growth in unconstrained biomimetic hydrogel is explored. It is shown that proliferative cancer cells tend to localize in high positive curvature organoid regions, causing their faster growth, while the overall growth pattern of organoids with diverse shapes tends to reduce interfacial tension at the organoid-hydrogel interface. In addition to the formation of organoids with diverse morphologies, this platform can be integrated into multi-tissue micro-physiological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202410547 | DOI Listing |
Per Med
January 2025
Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Biomedical Engineering, Columbia University;
Vascular organoids derived from human induced pluripotent stem cells (hiPSCs) recapitulate the cell type diversity and complex architecture of human vascular networks. This three-dimensional (3D) model holds substantial potential for vascular pathology modeling and in vitro drug screening. Despite recent advances, a key technical challenge remains in reproducibly generating organoids with consistent quality, which is crucial for downstream assays and applications.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
A balance between stem cell self-renewal and differentiation is required to maintain concurrent proliferation and cellular diversification in organoids; however, this has proven difficult in homogeneous cultures devoid of in vivo spatial niche gradients for adult stem cell-derived organoids. In this study, we leverage a combination of small molecule pathway modulators to enhance the stemness of organoid stem cells, thereby amplifying their differentiation potential and subsequently increasing cellular diversity within human intestinal organoids without the need for artificial spatial or temporal signaling gradients. Moreover, we demonstrate that this balance between self-renewal and differentiation can be effectively and reversibly shifted from secretory cell differentiation to the enterocyte lineage with enhanced proliferation using BET inhibitors, or unidirectional differentiation towards specific intestinal cell types by manipulating in vivo niche signals such as Wnt, Notch, and BMP.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA.
Human GABAergic inhibitory neurons (INs) in the telencephalon play crucial roles in modulating neural circuits, generating cortical oscillations, and maintaining the balance between excitation and inhibition. The major IN subtypes are based on their gene expression profiles, morphological diversity and circuit-specific functions. Although previous foundational work has established that INs originate in the ganglionic eminence regions in mice, recent studies have questioned origins in humans and non-human primates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!