Conventional patient monitoring methods require skin-to-skin contact, continuous observation, and long working shifts, causing physical and mental stress for medical professionals. Remote patient monitoring (RPM) assists healthcare workers in monitoring patients distantly using various wearable sensors, reducing stress and infection risk. RPM can be enabled by using the Digital Twins (DTs)-based Internet of Robotic Things (IoRT) that merges robotics with the Internet of Things (IoT) and creates a virtual twin (VT) that acquires sensor data from the physical twin (PT) during operation to reflect its behavior. However, manual navigation of PT causes cognitive fatigue for the operator, affecting trust dynamics, satisfaction, and task performance. Also, operating manual systems requires proper training and long-term experience. This research implements autonomous control in the DTs-based IoRT to remotely monitor patients with chronic or contagious diseases. This work extends our previous paper that required the user to manually operate the PT using its VT to collect patient data for medical inspection. The proposed decision-making algorithm enables the PT to autonomously navigate towards the patient's room, collect and transmit health data, and return to the base station while avoiding various obstacles. Rather than manually navigating, the medical personnel direct the PT to a specific target position using the Menu buttons. The medical staff can monitor the PT and the received sensor information in the pre-built virtual environment (VE). Based on the operator's preference, manual control of the PT is also achievable. The experimental outcomes and comparative analysis verify the efficiency of the proposed system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397836 | PMC |
http://dx.doi.org/10.3390/s24175840 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!