A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel End-to-End Deep Learning Framework for Chip Packaging Defect Detection. | LitMetric

A Novel End-to-End Deep Learning Framework for Chip Packaging Defect Detection.

Sensors (Basel)

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

Published: September 2024

As semiconductor chip manufacturing technology advances, chip structures are becoming more complex, leading to an increased likelihood of void defects in the solder layer during packaging. However, identifying void defects in packaged chips remains a significant challenge due to the complex chip background, varying defect sizes and shapes, and blurred boundaries between voids and their surroundings. To address these challenges, we present a deep-learning-based framework for void defect segmentation in chip packaging. The framework consists of two main components: a solder region extraction method and a void defect segmentation network. The solder region extraction method includes a lightweight segmentation network and a rotation correction algorithm that eliminates background noise and accurately captures the solder region of the chip. The void defect segmentation network is designed for efficient and accurate defect segmentation. To cope with the variability of void defect shapes and sizes, we propose a Mamba model-based encoder that uses a visual state space module for multi-scale information extraction. In addition, we propose an interactive dual-stream decoder that uses a feature correlation cross gate module to fuse the streams' features to improve their correlation and produce more accurate void defect segmentation maps. The effectiveness of the framework is evaluated through quantitative and qualitative experiments on our custom X-ray chip dataset. Furthermore, the proposed void defect segmentation framework for chip packaging has been applied to a real factory inspection line, achieving an accuracy of 93.3% in chip qualification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398187PMC
http://dx.doi.org/10.3390/s24175837DOI Listing

Publication Analysis

Top Keywords

void defect
24
defect segmentation
24
chip packaging
12
solder region
12
segmentation network
12
chip
9
defect
9
framework chip
8
void
8
void defects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!