This work aims to provide the hardware (HW) design of the optoelectronics interfaces for a visible-light communication (VLC) system that can be employed for several use cases. Potential applications include the transmission of ultra-high-definition (UHD) streaming video through existing reading lamps installed in passenger vans. In this use case, visible light is employed for the downlink, while infrared light is used for the uplink channel, acting as a remote controller. Two primary components -a Light Fidelity (LiFi) router and a USB dongle-were designed and implemented. The 'LiFi Router', handling the downlink channel, comprises components such as a visible Light-Emitting Diode (LED) and an infrared receiver. Operating at a supply voltage of 12 V and consuming current at 920 mA, it is compatible with standard voltage buses found in transport vehicles. The 'USB dongle', responsible for the uplink, incorporates an infrared LED and a receiver optimized for visible light. The USB dongle works at a supply voltage of 5 V and shows a current consumption of 1.12 A, making it well suited for direct connection to a universal serial bus (USB) port. The bandwidth achieved for the downlink is 11.66 MHz, while the uplink's bandwidth is 12.27 MHz. A system competent at streaming UHD video with the feature of being single-input multiple-output (SIMO) was successfully implemented via the custom hardware design of the optical transceivers and optoelectronics interfaces. To ensure the system's correct performance at a distance of 110 cm, the minimum signal-to-noise ratio (SNR) for both optical links was maintained at 10.74 dB. We conducted a proof-of-concept test of the VLC system in a passenger van and verified its optimal operation, effectively illustrating its performance in a real operating environment. Exemplifying potential implementations possible with the hardware system designed in this work, a bit rate of 15.2 Mbps was reached with On-Off Keying (OOK), and 11.25 Mbps was obtained with Quadrature Phase Shift Keying (QPSK) using Orthogonal Frequency-Division Multiplexing (OFDM) obtaining a bit-error rate (BER) of 3.3259 × 10 in a passenger van at a distance of 72.5 cm between the LiFi router and the USB dongle. As a final addition, a solar panel was installed on the passenger van's roof to power the user's laptop and the USB dongle via a power bank battery. It took 13.4 h to charge the battery, yielding a battery life of 22.3 h. This characteristic renders the user's side of the system entirely self-powered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397914 | PMC |
http://dx.doi.org/10.3390/s24175829 | DOI Listing |
Int J Biol Macromol
December 2024
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.
The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.
View Article and Find Full Text PDFEnergy Environ Sci
December 2024
Department of Physics, University of Oxford, Clarendon Laboratory Oxford OX1 3PU UK
It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!