This paper comprehensively reviews hardware acceleration techniques and the deployment of convolutional neural networks (CNNs) for analyzing electroencephalogram (EEG) signals across various application areas, including emotion classification, motor imagery, epilepsy detection, and sleep monitoring. Previous reviews on EEG have mainly focused on software solutions. However, these reviews often overlook key challenges associated with hardware implementation, such as scenarios that require a small size, low power, high security, and high accuracy. This paper discusses the challenges and opportunities of hardware acceleration for wearable EEG devices by focusing on these aspects. Specifically, this review classifies EEG signal features into five groups and discusses hardware implementation solutions for each category in detail, providing insights into the most suitable hardware acceleration strategies for various application scenarios. In addition, it explores the complexity of efficient CNN architectures for EEG signals, including techniques such as pruning, quantization, tensor decomposition, knowledge distillation, and neural architecture search. To the best of our knowledge, this is the first systematic review that combines CNN hardware solutions with EEG signal processing. By providing a comprehensive analysis of current challenges and a roadmap for future research, this paper provides a new perspective on the ongoing development of hardware-accelerated EEG systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397884 | PMC |
http://dx.doi.org/10.3390/s24175813 | DOI Listing |
Nat Commun
January 2025
Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Sport Science, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria.
Striking velocity is a key performance indicator in striking-based combat sports, such as boxing, Karate, and Taekwondo. This study aims to develop a low-cost, accelerometer-based system to measure kick and punch velocities in combat athletes. Utilizing a low-cost mobile phone in conjunction with the PhyPhox app, acceleration data was collected and analyzed using a custom algorithm.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China.
Reconfigurable processor-based acceleration of deep convolutional neural network (DCNN) algorithms has emerged as a widely adopted technique, with particular attention on sparse neural network acceleration as an active research area. However, many computing devices that claim high computational power still struggle to execute neural network algorithms with optimal efficiency, low latency, and minimal power consumption. Consequently, there remains significant potential for further exploration into improving the efficiency, latency, and power consumption of neural network accelerators across diverse computational scenarios.
View Article and Find Full Text PDFJ Pers Med
January 2025
Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA.
: Augmented reality (AR) may allow vitreoretinal surgeons to leverage microscope-integrated digital imaging systems to analyze and highlight key retinal anatomic features in real time, possibly improving safety and precision during surgery. By employing convolutional neural networks (CNNs) for retina vessel segmentation, a retinal coordinate system can be created that allows pre-operative images of capillary non-perfusion or retinal breaks to be digitally aligned and overlayed upon the surgical field in real time. Such technology may be useful in assuring thorough laser treatment of capillary non-perfusion or in using pre-operative optical coherence tomography (OCT) to guide macular surgery when microscope-integrated OCT (MIOCT) is not available.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
Quantum computing presents a promising avenue for solving complex problems, particularly in quantum chemistry, where it could accelerate the computation of molecular properties and excited states. This work focuses on computing excitation energies with hybrid quantum-classical algorithms for near-term quantum devices, combining the quantum linear response (qLR) method with a polarizable embedding (PE) environment. We employ the self-consistent operator manifold of quantum linear response (q-sc-LR) on top of a unitary coupled cluster (UCC) wave function in combination with a Davidson solver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!