A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Convolutional Neural Network-Based Drone Detection and Classification Using Overlaid Frequency-Modulated Continuous-Wave (FMCW) Range-Doppler Images. | LitMetric

AI Article Synopsis

  • This paper introduces a new method for detecting drones using a convolutional neural network (CNN) and range-Doppler map images from FMCW radar, aiming to improve on current techniques.
  • Current drone detection methods struggle with small or distant drones due to weak signal signatures, which can reduce their effectiveness.
  • The proposed approach overlays multiple time-series images into one, resulting in significant improvements in detection accuracy based on experimental results with various drone sizes.

Article Abstract

This paper proposes a novel drone detection method based on a convolutional neural network (CNN) utilizing range-Doppler map images from a frequency-modulated continuous-wave (FMCW) radar. The existing drone detection and identification techniques, which rely on the micro-Doppler signature (MDS), face challenges when a drone is small or located far away, leading to performance degradation due to signal attenuation and faint (MDS). In order to address these issues, this paper suggests a method where multiple time-series range-Doppler images from an FMCW radar are overlaid onto a single image and fed to a CNN. The experimental results, using actual data for three different drone sizes, show significant performance improvements in drone detection accuracy compared to conventional methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398168PMC
http://dx.doi.org/10.3390/s24175805DOI Listing

Publication Analysis

Top Keywords

drone detection
16
convolutional neural
8
frequency-modulated continuous-wave
8
continuous-wave fmcw
8
range-doppler images
8
fmcw radar
8
drone
6
neural network-based
4
network-based drone
4
detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: