In the realm of computer vision, object detection holds significant importance and has demonstrated commendable performance across various scenarios. However, it typically requires favorable visibility conditions within the scene. Therefore, it is imperative to explore methodologies for conducting object detection under low-visibility circumstances. With its balanced combination of speed and accuracy, the state-of-the-art YOLOv8 framework has been recognized as one of the top algorithms for object detection, demonstrating outstanding performance results across a range of standard datasets. Nonetheless, current YOLO-series detection algorithms still face a significant challenge in detecting objects under low-light conditions. This is primarily due to the significant degradation in performance when detectors trained on illuminated data are applied to low-light datasets with limited visibility. To tackle this problem, we suggest a new model named Grouping Offset and Isolated GiraffeDet Target Detection-YOLO based on the YOLOv8 architecture. The proposed model demonstrates exceptional performance under low-light conditions. We employ the repGFPN feature pyramid network in the design of the feature fusion layer neck to enhance hierarchical fusion and deepen the integration of low-light information. Furthermore, we refine the repGFPN feature fusion layer by introducing a sampling map offset to address its limitations in terms of weight and efficiency, thereby better adapting it to real-time applications in low-light environments and emphasizing the potential features of such scenes. Additionally, we utilize group convolution to isolate interference information from detected object edges, resulting in improved detection performance and model efficiency. Experimental results demonstrate that our GOI-YOLO reduces the parameter count by 11% compared to YOLOv8 while decreasing computational requirements by 28%. This optimization significantly enhances real-time performance while achieving a competitive increase of 2.1% in Map50 and 0.6% in Map95 on the ExDark dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398231 | PMC |
http://dx.doi.org/10.3390/s24175787 | DOI Listing |
PLoS One
January 2025
School of Information Science and Engineering, Xinjiang University, Urumqi, China.
Anomaly detection is crucial in areas such as financial fraud identification, cybersecurity defense, and health monitoring, as it directly affects the accuracy and security of decision-making. Existing generative adversarial nets (GANs)-based anomaly detection methods overlook the importance of local density, limiting their effectiveness in detecting anomaly objects in complex data distributions. To address this challenge, we introduce a generative adversarial local density-based anomaly detection (GALD) method, which combines the data distribution modeling capabilities of GANs with local synthetic density analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.
View Article and Find Full Text PDFJ Imaging
January 2025
Science and Research Department, Moscow Technical University of Communications and Informatics, 111024 Moscow, Russia.
Object detection in images is a fundamental component of many safety-critical systems, such as autonomous driving, video surveillance systems, and robotics. Adversarial patch attacks, being easily implemented in the real world, provide effective counteraction to object detection by state-of-the-art neural-based detectors. It poses a serious danger in various fields of activity.
View Article and Find Full Text PDFJ Imaging
January 2025
Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
The increasing reliance on deep neural network-based object detection models in various applications has raised significant security concerns due to their vulnerability to adversarial attacks. In physical 3D environments, existing adversarial attacks that target object detection (3D-AE) face significant challenges. These attacks often require large and dispersed modifications to objects, making them easily noticeable and reducing their effectiveness in real-world scenarios.
View Article and Find Full Text PDFJ Imaging
January 2025
School of Artificial Intelligence, Changchun University of Science and Technology, Changchun 130012, China.
For surveillance video management in university laboratories, issues such as occlusion and low-resolution face capture often arise. Traditional face recognition algorithms are typically static and rely heavily on clear images, resulting in inaccurate recognition for low-resolution, small-sized faces. To address the challenges of occlusion and low-resolution person identification, this paper proposes a new face recognition framework by reconstructing Retinaface-Resnet and combining it with Quality-Adaptive Margin (adaface).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!