Coal mining in the Loess Plateau can very easily generate ground cracks, and these cracks can immediately result in ventilation trouble under the mine shaft, runoff disturbance, and vegetation destruction. Advanced UAV (Unmanned Aerial Vehicle) high-resolution mapping and DL (Deep Learning) are introduced as the key methods to quickly delineate coal mining ground surface cracks for disaster prevention. Firstly, the dataset named the Ground Cracks of Coal Mining Area Unmanned Aerial Vehicle (GCCMA-UAV) is built, with a ground resolution of 3 cm, which is suitable to make a 1:500 thematic map of the ground crack. This GCCMA-UAV dataset includes 6280 images of ground cracks, and the size of the imagery is 256 × 256 pixels. Secondly, the DRA-UNet model is built effectively for coal mining ground surface crack delineation. This DRA-UNet model is an improved UNet DL model, which mainly includes the DAM (Dual Dttention Dechanism) module, the RN (residual network) module, and the ASPP (Atrous Spatial Pyramid Pooling) module. The DRA-UNet model shows the highest recall rate of 77.29% when the DRA-UNet was compared with other similar DL models, such as DeepLabV3+, SegNet, PSPNet, and so on. DRA-UNet also has other relatively reliable indicators; the precision rate is 84.92% and the F1 score is 78.87%. Finally, DRA-UNet is applied to delineate cracks on a DOM (Digital Orthophoto Map) of 3 km in the mining workface area, with a ground resolution of 3 cm. There were 4903 cracks that were delineated from the DOM in the Huojitu Coal Mine Shaft. This DRA-UNet model effectively improves the efficiency of crack delineation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397846 | PMC |
http://dx.doi.org/10.3390/s24175760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!