With the continuous increase in train running speeds and the rapid complexity of operation environments, running stability of the high-speed train is facing significant challenges. A series of abnormal vibration issues, caused by hunting instability, have emerged, including bogie instability alarm, carbody swaying, and carbody shaking, posing a significant threat to the safe and stable operation of high-speed trains. Therefore, the monitoring and diagnosis of hunting instability have become important research topics in rail transit. This review follows the development of fault diagnosis for bogie hunting instability and carbody hunting instability. It first summarizes the existing evaluation standards and innovative diagnostic methods. Due to the current limitation of hunting instability evaluation standards, which can only detect large-amplitude hunting, this paper addresses the gap in evaluation criteria for early-stage, small amplitude hunting instability diagnosis. A thorough overview of the progress made by researches in this field of research is given, emphasizing three primary facets: diagnostic signal sources, diagnostic features, and diagnostic targets. Furthermore, given that existing methods only classify faults into small and large amplitudes, which does not meet the practical need for quickly and accurately identifying fault types and severity during operation, this review introduces existing works on the detailed assessment and fault tracing of hunting instability, as well as the mechanisms underlying its occurrence, with the aim of achieving a comprehensive diagnosis of hunting instability. Finally, the limitations of current methods and the future development trends in hunting instability diagnostics are discussed and summarized. This paper provides readers with a framework for the research process of hunting instability diagnosis, offering valuable references and innovative perspectives for their future research efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398272 | PMC |
http://dx.doi.org/10.3390/s24175719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!