Agricultural droughts are a threat to local economies, as they disrupt crops. The monitoring of agricultural droughts is of practical significance for mitigating loss. Even though satellite data have been extensively used in agricultural studies, realizing wide-range, high-resolution, and high-precision agricultural drought monitoring is still difficult. This study combined the high spatial resolution of unmanned aerial vehicle (UAV) remote sensing with the wide-range monitoring capability of Landsat-8 and employed the local average method for upscaling to match the remote sensing images of the UAVs with satellite images. Based on the measured ground data, this study employed two machine learning algorithms, namely, random forest (RF) and eXtreme Gradient Boosting (XGBoost1.5.1), to establish the inversion models for the relative soil moisture. The results showed that the XGBoost model achieved a higher accuracy for different soil depths. For a soil depth of 0-20 cm, the XGBoost model achieved the optimal result (R = 0.6863; root mean square error (RMSE) = 3.882%). Compared with the corresponding model for soil depth before the upscaling correction, the UAV correction can significantly improve the inversion accuracy of the relative soil moisture according to satellite remote sensing. To conclude, a map of the agricultural drought grade of winter wheat in the Huaibei Plain in China was drawn up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398075PMC
http://dx.doi.org/10.3390/s24175715DOI Listing

Publication Analysis

Top Keywords

agricultural drought
12
remote sensing
12
drought monitoring
8
winter wheat
8
agricultural droughts
8
relative soil
8
soil moisture
8
xgboost model
8
model achieved
8
soil depth
8

Similar Publications

Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses.

View Article and Find Full Text PDF

Chinese chestnut ( Blume) is an important economic forest tree species and mainly cultivated in mountainous areas and wastelands, subjecting it to various abiotic stresses. The protein phosphatase 2C (PP2C) genes contributes largely to stress responses in plants. However, the characteristics and functions of genes in remain unknown.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Changing climates threaten crop growth and fodder yields in dryland farming. This study assessed two radish genotypes (LINE 2, ENDURANCE) under three water regimes (W1 = well-watered, W2 = moderate stress, W3 = severe stress) and two leaf harvesting options over two seasons (2021/22 and 2022/23). Key findings revealed that water regime significantly (P < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!