A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Improvement of Density Peaks Clustering Algorithm and Its Application to Point Cloud Segmentation of LiDAR. | LitMetric

The Improvement of Density Peaks Clustering Algorithm and Its Application to Point Cloud Segmentation of LiDAR.

Sensors (Basel)

State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Published: September 2024

This work focuses on the improvement of the density peaks clustering (DPC) algorithm and its application to point cloud segmentation in LiDAR. The improvement of DPC focuses on avoiding the manual determination of the cut-off distance and the manual selection of cluster centers. And the clustering process of the improved DPC is automatic without manual intervention. The cut-off distance is avoided by forming a voxel structure and using the number of points in the voxel as the local density of the voxel. The automatic selection of cluster centers is realized by selecting the voxels whose gamma values are greater than the gamma value of the inflection point of the fitted γ curve as cluster centers. Finally, a new merging strategy is introduced to overcome the over-segmentation problem and obtain the final clustering result. To verify the effectiveness of the improved DPC, experiments on point cloud segmentation of LiDAR under different scenes were conducted. The basic DPC, K-means, and DBSCAN were introduced for comparison. The experimental results showed that the improved DPC is effective and its application to point cloud segmentation of LiDAR is successful. Compared with the basic DPC, K-means, the improved DPC has better clustering accuracy. And, compared with DBSCAN, the improved DPC has comparable or slightly better clustering accuracy without nontrivial parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398225PMC
http://dx.doi.org/10.3390/s24175693DOI Listing

Publication Analysis

Top Keywords

improved dpc
20
point cloud
16
cloud segmentation
16
segmentation lidar
16
application point
12
cluster centers
12
dpc
9
improvement density
8
density peaks
8
peaks clustering
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!