ZnO Hexagonal Nano- and Microplates Modified with Nanomaterials as a Gas-Sensitive Material for DMS Detection-Extended Studies.

Sensors (Basel)

Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

Published: September 2024

The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. Issues related to certain uncertainties concerning the influence of high humidity on DMS measurements with resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory lower detection limit of DMS are the subject of intensive research. This paper presents the results of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to the authors' previous studies contributed to the development of a sensor that is highly sensitive to 1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water vapour content (90% RH) in the analysed atmosphere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398269PMC
http://dx.doi.org/10.3390/s24175690DOI Listing

Publication Analysis

Top Keywords

hexagonal nano-
8
nano- microplates
8
lower detection
8
detection limit
8
dms
6
zno hexagonal
4
microplates modified
4
modified nanomaterials
4
nanomaterials gas-sensitive
4
gas-sensitive material
4

Similar Publications

The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.

View Article and Find Full Text PDF

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

Mineral-Mediated Epitaxial Growth of CoO Nanoparticles for Efficient Electrochemical HO Activation.

ACS Nano

December 2024

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.

Solution-phase epitaxy is a versatile method to synthesize functional nanomaterials with customized properties, where supports play a central role as they not only serve as nucleation templates but also greatly affect the local electronic structures. However, developing functional supports remains a great challenge. Herein, inspired by the commonly observed epitaxy of minerals in the natural environment, we report using calcination-modified kaolinite as the support for the epitaxial growth of hexagonal CoO nanoparticles (-CoO NPs), which enables over 40 times higher mass-specific activity toward HO electrochemical activation than the counterpart without the support.

View Article and Find Full Text PDF

Enhancing Rashba Spin-Splitting Strength by Orbital Hybridization.

ACS Nano

December 2024

Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore.

A Rashba spin-splitting state with spin-momentum locking enables the charge-spin interconversion known as the Rashba effect, induced by the interplay of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC). Enhancing spin-splitting strength is promising to achieve high spin-orbit torque (SOT) efficiency for low-power-consumption spintronic devices. However, the energy scale of natural ISB at the interface is relatively small, leading to the weak Rashba effect.

View Article and Find Full Text PDF

When two BN layers are stacked in parallel in an AB or BA arrangement, a spontaneous out-of-plane electric polarization arises due to charge transfer in the out-of-plane B-N bonds. The ferroelectric switching from AB to BA (or BA to AB) can be achieved with a relatively small out-of-plane electric field through the in-plane sliding of one atomic layer over the other. However, the optical detection of such ferroelectric switching in hBN has not yet been demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!