A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions. | LitMetric

Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions.

Sensors (Basel)

Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland.

Published: August 2024

AI Article Synopsis

  • The study focuses on classifying unmanned aerial vehicles (UAVs) based on acoustic signals they produce while hovering at 8 meters, which is crucial for decision-making in drone operations.
  • It involved recording sounds from 17 different drone models individually and analyzing these sounds using Mel-frequency cepstral coefficients (MFCCs).
  • The classification achieved a high accuracy score of 98.8%, demonstrating the potential to both detect UAVs and identify their specific models through their acoustic signatures.

Article Abstract

Detection of unmanned aerial vehicles (UAVs) and their classification on the basis of acoustic signals recorded in the presence of UAVs is a very important source of information. Such information can be the basis of certain decisions. It can support the autonomy of drones and their decision-making system, enabling them to cooperate in a swarm. The aim of this study was to classify acoustic signals recorded in the presence of 17 drones while they hovered individually at a height of 8 m above the recording equipment. The signals were obtained for the drones one at a time in external environmental conditions. Mel-frequency cepstral coefficients (MFCCs) were evaluated from the recorded signals. A discriminant analysis was performed based on 12 MFCCs. The grouping factor was the drone model. The result of the classification is a score of 98.8%. This means that on the basis of acoustic signals recorded in the presence of a drone, it is possible not only to detect the object but also to classify its model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397886PMC
http://dx.doi.org/10.3390/s24175663DOI Listing

Publication Analysis

Top Keywords

acoustic signals
16
signals recorded
12
recorded presence
12
unmanned aerial
8
aerial vehicles
8
external environmental
8
environmental conditions
8
basis acoustic
8
signals
6
classification unmanned
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: