To address the problem of ignoring unpaved roads when planning off-road emergency rescue paths, an improved A* algorithm that incorporates road factors is developed to create an off-road emergency rescue path planning model in this study. To reduce the number of search nodes and improve the efficiency of path searches, the current node is classified according to the angle between the line connecting the node and the target point and the due east direction. Additionally, the search direction is determined in real time through an optimization method to improve the path search efficiency. To identify the path with the shortest travel time suitable for emergency rescue in wilderness scenarios, a heuristic function based on the fusion of road factors and a path planning model for off-road emergency rescue is developed, and the characteristics of existing roads are weighted in the process of path searching to bias the selection process toward unpaved roads with high accessibility. The experiments show that the improved A* algorithm significantly reduces the travel time of off-road vehicles and that path selection is enhanced compared to that with the traditional A* algorithm; moreover, the improved A* algorithm reduces the number of nodes by 16.784% and improves the search efficiency by 27.18% compared with the traditional 16-direction search method. The simulation results indicate that the improved algorithm reduces the travel time of off-road vehicles by 21.298% and improves the search efficiency by 93.901% compared to the traditional A* algorithm, thus greatly enhancing off-road path planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397823 | PMC |
http://dx.doi.org/10.3390/s24175643 | DOI Listing |
Int J Surg
January 2025
Carcinoma Department of Traditional Chinese Medicine, Dianjiang People's Hospital of Chongqing, Chongqing, PR China.
The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada.
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.
View Article and Find Full Text PDFTransl Behav Med
January 2025
Slone Epidemiology Center at Boston University, 72 E Concord St, Boston, MA, USA.
Artificial intelligence (AI) and its subset, machine learning, have tremendous potential to transform health care, medicine, and population health through improved diagnoses, treatments, and patient care. However, the effectiveness of these technologies hinges on the quality and diversity of the data used to train them. Many datasets currently used in machine learning are inherently biased and lack diversity, leading to inaccurate predictions that may perpetuate existing health disparities.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China.
It is critical to appreciate the role of the tumour-associated microenvironment (TME) in developing strategies for the effective therapy of cancer, as it is an important factor that determines the evolution and treatment response of tumours. This work combines machine learning and single-cell RNA sequencing (scRNA-seq) to explore the glioma tumour microenvironment's TME. With the help of genome-wide association studies (GWAS) and Mendelian randomization (MR), we found genetic variants associated with TME elements that affect cancer and cardiovascular disease outcomes.
View Article and Find Full Text PDFSingle-cell RNA-seq analysis characterizes developmental mechanisms of cellular differentiation, lineage determination, and reprogramming with differential conditioning of the microenvironment. In this article, the underlying dynamics are formulated via optimal transport with algorithms that calculate the transition probability of the state of cell dynamics over time. The algorithmic biases of optimal transport (OT) due to entropic regularization are balanced by Sinkhorn divergence, which normally de-biases the regularized transport by centering them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!