In urban road environments, global navigation satellite system (GNSS) signals may be interrupted due to occlusion by buildings and obstacles, resulting in reduced accuracy and discontinuity of combined GNSS/inertial navigation system (INS) positioning. Improving the accuracy and robustness of combined GNSS/INS positioning systems for land vehicles in the presence of GNSS interruptions is a challenging task. The main objective of this paper is to develop a method for predicting GNSS information during GNSS outages based on a long short-term memory (LSTM) neural network to assist in factor graph-based combined GNSS/INS localization, which can provide a reliable combined localization solution during GNSS signal outages. In an environment with good GNSS signals, a factor graph fusion algorithm is used for data fusion of the combined positioning system, and an LSTM neural network prediction model is trained, and model parameters are determined using the INS velocity, inertial measurement unit (IMU) output, and GNSS position incremental data. In an environment with interrupted GNSS signals, the LSTM model is used to predict the GNSS positional increments and generate the pseudo-GNSS information and the solved results of INS for combined localization. In order to verify the performance and effectiveness of the proposed method, we conducted real-world road test experiments on land vehicles installed with GNSS receivers and inertial sensors. The experimental results show that, compared with the traditional combined GNSS/INS factor graph localization method, the proposed method can provide more accurate and robust localization results even in environments with frequent GNSS signal loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398165 | PMC |
http://dx.doi.org/10.3390/s24175605 | DOI Listing |
Sensors (Basel)
August 2024
School of Automation, Beijing Information Science & Technology University, Beijing 100192, China.
In urban road environments, global navigation satellite system (GNSS) signals may be interrupted due to occlusion by buildings and obstacles, resulting in reduced accuracy and discontinuity of combined GNSS/inertial navigation system (INS) positioning. Improving the accuracy and robustness of combined GNSS/INS positioning systems for land vehicles in the presence of GNSS interruptions is a challenging task. The main objective of this paper is to develop a method for predicting GNSS information during GNSS outages based on a long short-term memory (LSTM) neural network to assist in factor graph-based combined GNSS/INS localization, which can provide a reliable combined localization solution during GNSS signal outages.
View Article and Find Full Text PDFSensors (Basel)
February 2023
Department of Geodesy and Surveying, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
We present a position and attitude estimation algorithm of moving platforms based on the tightly coupled sensor fusion of low-cost multi baseline GNSS, inertial, magnetic and barometric observations obtained by low-cost sensors and affordable dual-frequency GNSS receivers. The sensor fusion algorithm is realized by an Extended Kalman Filter and estimates the states including GNSS receiver inter-channel biases, integer ambiguities and non-GNSS receiver biases. Tightly coupled sensor fusion increases the reliability of the position and attitude solution in challenging environments such as urban canyons by utilizing the inertial observations in case of GNSS outage.
View Article and Find Full Text PDFSensors (Basel)
February 2023
School of Marine Science, Shanghai Ocean University, Shanghai 201306, China.
Confronted with unmanned surface vessel (USV) operations where GNSS signals are unavailable due to obscuration and other factors, a LiDAR SLAM-assisted fusion positioning method for USVs is proposed to combine GNSS/INS positioning with LiDAR-SLAM. When the USV works in wide-open water, the carrier phase differential GNSS/INS loosely coupled integration strategy is applied to fuse and calibrate the positioning data, and the positioning information of the USV is obtained through the coordinate conversion process. The system uses a dynamic switching strategy to enter to LiDAR-SLAM positioning when GNSS signals are not available, compensating the LiDAR data with precise angle information to ensure accurate and stable positioning.
View Article and Find Full Text PDFSensors (Basel)
January 2022
Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China.
This article examines the positioning effect of integrated navigation after adding an LEO constellation signal source and a 5G ranging signal source in the context of China's new infrastructure construction. The tightly coupled Kalman federal filters are used as the algorithm framework. Each signal source required for integrated navigation is simulated in this article.
View Article and Find Full Text PDFSensors (Basel)
April 2020
Aerospace Information Research Institute, Chinese Academy of Science, Beijing 100864, China.
Using the Global Navigation Satellite System (GNSS), it is difficult to provide continuous and reliable position service for vehicle navigation in complex urban environments, due to the natural vulnerability of the GNSS signal. With the rapid development of the sensor technology and the reduction in their costs, the positioning performance of GNSS is expected to be significantly improved by fusing multi-sensors. In order to improve the continuity and reliability of the vehicle navigation system, we proposed a multi-sensor tight fusion (MTF) method by combining the inertial navigation system (INS), odometer, and barometric altimeter with the GNSS technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!