A new analytical method, based on SPRi biosensors, has been developed for the simultaneous determination of the pro-angiogenic factors HIF-1α, angiopoietin-2 (ANG-2), and interleukin-1β (IL-1β) in biological fluids. These proteins take part in the process of angiogenesis, i.e., the creation of new blood vessels, which is a key stage of cancer development and metastasis. A separate validation process was carried out for each individual compound, indicating that the method can also be used to study one selected protein. Low values of the limit of detection (LOD) and quantification (LOQ) indicate that the developed method enables the determination of very low concentrations, in the order of pg/mL. The LOD values obtained for HIF-1α, ANG-2, and IL-1β were 0.09, 0.01, and 0.01 pg/mL, respectively. The LOQ values were 0.27, 0.039, and 0.02 pg/mL, and the response ranges of the biosensor were 5.00-100.00, 1.00-20.00, and 1.00-15.00 pg/mL. Moreover, determining the appropriate validation parameters confirmed that the design offers high precision, accuracy, and sensitivity. To prove the usefulness of the biosensor in practice, determinations were made in plasma samples from a control group and from a study group consisting of patients with diagnosed bladder cancer. The preliminary results obtained indicate that this biosensor can be used for broader analyses of bladder cancer. Each of the potential biomarkers, HIF-1α, ANG-2, and IL-1β, produced higher concentrations in the study group than in the control group. These are preliminary studies that serve to develop hypotheses, and their confirmation requires the analysis of a larger number of samples. However, the constructed biosensor is characterized by its ease and speed of measurement, and the method does not require special preparation of samples. SPRi biosensors can be used as a sensitive and highly selective method for determining potential blood biomarkers, which in the future may become part of the routine diagnosis of cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397757 | PMC |
http://dx.doi.org/10.3390/s24175481 | DOI Listing |
Ital J Pediatr
January 2025
Department of Pediatrics, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, Pavia, 27100, Italy.
Background: Chronic Nonbacterial Osteomyelitis (CNO) is a rare auto-inflammatory disease that mainly affects children, and manifests with single or multiple painful bone lesions. Due to the lack of specific laboratory markers, CNO diagnosis is a matter of exclusion from different conditions, first and foremost bacterial osteomyelitis and malignancies. Whole Body Magnetic Resonance (WBMR) and bone biopsy are the gold standard for the diagnosis.
View Article and Find Full Text PDFNat Protoc
January 2025
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel.
Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biological Sciences, Columbia University, New York, NY, USA.
A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states.
View Article and Find Full Text PDFAnimal
November 2024
Centro Universitario de la Región Este, Universidad de la República, Uruguay.
Cow-calf systems grazing native grasslands must transition toward improved economic performance simultaneously with the conservation and improvement of ecosystem services they provide. We present an innovation model with this objective based on a hierarchical model that links functional relationships between state variables, grazing experiments and its validation, and co-innovation at the farm level. This paper describes the hypotheses, designs, and results of the studies, and the role of grazing ecology and herbivore nutrition to support the process of ecological intensification of livestock systems on native grasslands.
View Article and Find Full Text PDFACS Nano
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Alternating- and direct-current (ADC) bipolar electropolymerization (EP) offers an efficient and scalable approach for the lateral synthesis of conjugated macromolecules, enabling the simultaneous polymerization and deposition of large conducting polymer films with intriguing fractal-like ramified topographies onto arbitrary insulating substrates under remote control. In this study, we presented the remote synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT):anion sensing films on a plastic substrate, aimed at their use in flexible nitrogen dioxide (NO) gas sensors. Notably, the PEDOT:ClO films exhibited excellent gas-sensing characteristics, with a sensitivity of 54.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!