The solvolysis reaction with ionic liquids is one of the most frequently used methods for producing nanometer-sized cellulose. In this study, the nanocellulose was obtained by reacting microcrystalline cellulose with 1-ethyl-3-methylimidazolium acetate (EmimOAc). The aim of this research was to determine the influence of various antisolvents used in the regeneration of cellulose after treatment with ionic liquid on its properties. The following antisolvents were used in this research: acetone, acetonitrile, water, ethanol and a mixture of acetone and water in a 1:1 / ratio. The nanocellulose was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM) and elemental analysis (EA). The results show that the antisolvent used to regenerate cellulose after the solvolysis reaction with EmimOAc affects its properties. Water, ethanol and a mixture of acetone and water successfully removed the used ionic liquid from the cellulose structure, while acetone and acetonitrile were unable to completely remove EmimOAc from the cellulosic material. The results of the XRD analysis indicate that there is a correlation between the ionic liquid content in the regenerated cellulose and its degree of crystallinity. Among the tested solvents, water leads to the effective removal of EmimOAc from the cellulose structure, which is additionally characterized by the smallest particle size and non-formation of agglomerates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396786 | PMC |
http://dx.doi.org/10.3390/molecules29174227 | DOI Listing |
ACS Macro Lett
January 2025
Materials Department, University of California, Santa Barbara, California 93106, United States.
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.
View Article and Find Full Text PDFSoft Matter
January 2025
Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
Research into flexible solid-state supercapacitors for wearable electronics focuses on achieving high performance and safety. Gel polymer electrolytes (GPEs) are preferred over fully solid-state electrolytes due to their better ionic conductivity while addressing safety concerns associated with liquid electrolytes. This study aims to enhance high-performance gel polymer electrolytes (HP-GPEs) by improving the ion transfer rate of polyvinyl alcohol (PVA) with sulfonated hexagonal boron nitride (known as white-graphene) and exploring how rheology influences ion-conduction within HP-GPEs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, University of Tabriz, Tabriz, Iran.
Chemosphere
December 2024
Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:
Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!