A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cashew Nut Shell Waste Derived Graphene Oxide. | LitMetric

Cashew Nut Shell Waste Derived Graphene Oxide.

Molecules

Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia.

Published: September 2024

The particular properties of graphene oxide (GO) make it a material with great technological potential, so it is of great interest to find renewable and eco-friendly sources to satisfy its future demand sustainably. Recently, agricultural waste has been identified as a potential raw material source for producing carbonaceous materials. This study explores the potential of cashew nut shell (CNS), a typically discarded by-product, as a renewable source for graphene oxide synthesis. Initially, deoiled cashew nut shells (DCNS) were submitted to pyrolysis to produce a carbonaceous material (Py-DCNS), with process optimization conducted through response surface methodology. Optimal conditions were identified as a pyrolysis temperature of 950 °C and a time of 1.8 h, yielding 29.09% Py-DCNS with an estimated purity of 82.55%, which increased to 91.9% post-washing. Using a modified Hummers method, the Py-DCNS was subsequently transformed into graphene oxide (GO-DCNS). Structural and functional analyses were carried out using FTIR spectroscopy, revealing the successful generation of GO-DCNS with characteristic oxygen-containing functional groups. Raman spectroscopy confirmed the formation of defects and layer separations in GO-DCNS compared to Py-DCNS, indicative of effective oxidation. The thermogravimetric analysis demonstrated distinct thermal decomposition stages for GO-DCNS, aligning with the expected behavior for graphene oxide. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) further corroborated the morphological and compositional transformation from DCNS to GO-DCNS, showcasing reduced particle size, increased porosity, and significant oxygen functional groups. The results underscore the viability of cashew nut shells as a sustainable precursor for graphene oxide production, offering an environmentally friendly alternative to conventional methods. This innovative approach addresses the waste management issue associated with cashew nut shells and contributes to developing high-value carbon materials with broad technological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397352PMC
http://dx.doi.org/10.3390/molecules29174168DOI Listing

Publication Analysis

Top Keywords

graphene oxide
24
cashew nut
20
nut shells
12
nut shell
8
functional groups
8
graphene
6
oxide
6
cashew
5
go-dcns
5
shell waste
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!