The microstructure and chemical properties of the corona discharge process could provide an effective method for predicting the performance of high-voltage cable insulation materials. In this work, the depth profile of the microstructure and chemical characteristics of corona discharge-treated PE were extensively investigated using Doppler broadening of position annihilation spectroscopy accompanied with positron annihilation lifetime spectroscopy, attenuated total reflectance Fourier transform infrared spectra, Raman spectra and contact angle measurement. By increasing corona discharge duration, the oxygen-containing polar groups, including hydroxyl, carbonyl and ester groups, strongly contribute to the deterioration of hydrophobicity and the enhancement of hydrophilicity. And the mean free volume size, with a broadening distribution, decreases slightly. The line shape parameter decreases because of the decrease in free volume elements and the appearance of oxygen-containing groups. Also, the thickness of the degradation layer, determined from the parameter with positron injection depth, increases and diffuses into the PE matrix. A linear plot within the degradation layer of different corona treatment duration samples indicates the defect type does not change. The parameter decreases and the parameter increases with an increasing corona duration. Using a slow positron beam, the nondestructive probe can be used to profile the microstructure and chemical environment across the corona discharge damage depth, which is beneficial for investigating the surface and interfacial insulation materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397045PMC
http://dx.doi.org/10.3390/molecules29174147DOI Listing

Publication Analysis

Top Keywords

microstructure chemical
12
corona discharge
12
corona discharge-treated
8
positron annihilation
8
annihilation spectroscopy
8
insulation materials
8
profile microstructure
8
increasing corona
8
free volume
8
parameter decreases
8

Similar Publications

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

The defoliation quality of mugwort defoliation equipment is an important factor to measure the defoliation efficiency, and the tensile properties of mugwort petiole will have an impact on the defoliation quality, such as the crushing rate and the abscission rate. In order to reduce the crushing rate and improve the abscission rate during mechanical harvesting of mugwort leaves, the tensile properties of mugwort petiole need to be studied. The tensile properties of mugwort petiole are closely related to its macroscopic and microscopic physicochemical parameters.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

Abstract: The effects of post-hydration heating over a broad range of temperatures are evident in many Mighei-like carbonaceous (CM) chondrites as a variety of mineral transitions. To better understand these processes and how a CM chondrite's starting composition may have affected them, we experimentally heated two meteorites with different degrees of aqueous alteration, Allan Hills 83100 and Murchison, at 25 °C temperature steps from 200 °C to 950 °C and 300 °C to 750 °C, respectively. During heating, synchrotron in situ X-ray diffraction patterns were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!