A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on the Preparation and Performance of Lightweight Wallboards from MSWIBA Foam Concrete. | LitMetric

Study on the Preparation and Performance of Lightweight Wallboards from MSWIBA Foam Concrete.

Materials (Basel)

College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China.

Published: September 2024

To reduce land use and avoid further pollution, incineration for power generation has become the main method for municipal solid waste treatment. This research focused on the potential for transforming Municipal Solid Waste Incineration Bottom Ash (MSWIBA) into a finely ground powder. The impact of the powder's fineness and the amount of water used on its effectiveness was analyzed using a method called grey theory. MSWIBA was used as a partial substitute for cement in making MSWIBA foam concrete and lightweight wall panels. By modifying the fineness and water utilization of the recycled micro-powder, its maximum activity index can be increased to 90.1. This study determined the influence of factors including apparent dry density, water-cement ratio, foaming agent dilution ratio, and admixture dosage on the strength of the recycled foam concrete, and established the optimal mix ratio. This study employed a combination of physical experiments and numerical simulations to elucidate the impact of panel material, core layer thickness, and layer sequence on sound insulation performance. The simulation results were in close agreement with the experimental findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395903PMC
http://dx.doi.org/10.3390/ma17174402DOI Listing

Publication Analysis

Top Keywords

foam concrete
12
mswiba foam
8
municipal solid
8
solid waste
8
study preparation
4
preparation performance
4
performance lightweight
4
lightweight wallboards
4
mswiba
4
wallboards mswiba
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!